Toolik Field Station

Stream networks are intimately connected to the landscapes through which they flow and significantly transform nutrients and organic matter that are in transport from landscapes to oceans. This work will quantify the relative influences of throughflow, lateral inputs, and hyporheic (a layer of surface sediments that contains water which exchanges continuously with water in the open channel) regeneration on the seasonal fluxes of C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. This objective is a logical extension of earlier. This work will focus on seasonal dynamics at different river reach scales (1st to 4th order streams) and will lay the groundwork for a whole river network model to integrate the influences of throughflow, lateral inputs, hyporheic regeneration, and in-stream metabolism on C, N, and P fluxes through an entire river network.
For more information see project's web site:  Changing Seasonality and Arctic Stream Networks

Changing Seasonality and Arctic Stream Networks
Title Abstract
discharge data from Peat Inlet near Toolik Field Station, Alaska, summer 2010
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from Peat Inlet stream, 2010 season.
Discharge data from I8 Inlet, near Toolik Field Station, Alaska, summer 2010
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Inlet stream, 2010 season.
Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2012
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2012 season.
Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2012
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2012 season.
Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2011
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2011 season.
Specific conductance and temperature data from Peat Inlet near Toolik Field Station, Alaska, summer 2011
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from Peat Inlet stream, 2011 season.
daily average discharge data from Peat Inlet near Toolik Field Station, Alaska, summer 2011
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from Peat Inlet stream, 2011... more
Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2011
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2011 season.
Daily average discharge data from I8 Inlet, near Toolik Field Station, Alaska, summer 2011
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Inlet stream, 2011... more
daily average discharge data from I8 Outlet near Toolik Field Station, Alaska, summer 2011
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Outlet stream, 2011... more
Specific conductance and temperature data from Peat Inlet near Toolik Field Station, Alaska, summer 2010
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from Peat Inlet stream, 2010 season.
Discharge data from I8 Outlet near Toolik Field Station, Alaska, summer 2010
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Outlet stream, 2010 season.
Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2010
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2010 season.
Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2010
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2010 season.
Ecotypes Transplant Garden
Title Abstract
Mass per tiller, nitrogen concentration, stable isotope ratios for carbon and nitrogen from the 1980-82 Eriophorum vaginatum reciprocal transplant experiment along a latitudinal gradient in interior Alaska collected in July, 2011
In 1980-1982, six transplant gardens were established along a latitudinal gradient in interior Alaska from Eagle Creek, AK in the south to Prudhoe Bay, AK in the north. Three sites, Toolik Lake (TL), Sagwon (SAG), and Prudhoe Bay (PB) are north of the continental divide and the remaining three, Eagle Creek (EC), No Name Creek (NN), and Coldfoot (CF), are south of the continental divide. Each garden consisted of 10 individual Eriophorum vaginatum tussocks transplanted back to their home-site... more
Lakes Chlorophyll and Primary Production
Title Abstract
Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2014.
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2010 to 2014. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009.
Decadal file describing the chlorophyll a and primary production in  various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009.  Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production.  The amount of chlorophyll a and pheophytin were also measured.
Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999.
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1983 to 1989. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Terrestrial Plant Communities and Plant Species List
Title Abstract
2012 relative percent cover of plant species in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.
In 2012, relative percent cover of plant species was measured in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.
2011 relative percent cover of plant species in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.
In 2011, relative percent cover of plant species was measured in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.
2010 relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; and in new experimental plots established in 2006.
In 2010, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; in new experimental plots established in 2006; and for Sagavanirktok River plots in tussock and heath tundra, Norht Slope Alaska 2008.
In 2008, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Multi-trophic Impacts Weather
Title Abstract
Daliy weather data (wind, temperatrue, humididty, pressure, precipitation) from Roche Mountonnee , in the northern foothills of the Brooks Range, Alaska, summers 2010-2014.
Daily weather data from mid May to late July 2011 to 2013 from Roche Moutonnee (south of Toolik Field Station and Arctic LTER), in the northern foothills of the Brooks Range, Alaska. Parameters measured include: wind speed, wind directions, temperature, humidity, pressure and precipitation.
Daliy weather data from Sagavanirktok River DOT site, in the northern foothills of the Brooks Range, Alaska, May-July 2010-2014.
Daliy weather data from mid May to late July 2011 to 2013 from Sagavanirktok Department of Transport (DOT) site (south of Toolik Field Station and Arctic LTER), in the northern foothills of the Brooks Range, Alaska. Parameters measured include: wind speed, wind directions, temperatrue, humididty, pressure and precipitation. (Rich, et al 2013).
Daily landscape-level snow cover percent data from (Rich, et al 2013) TLFS, IMVT, and SDOT sitse, in the northern foothills of the Brooks Range, Alaska,spring 2011 to 2014.
Daily landscape-level snow cover percent data from Toolik Lake Field Station (TFS), Imnavait (IMVT), and the Sagavanirktok River DOT site (SDOT), in the northern foothills of the Brooks Range, Alaska. Data collected from May to early June 2011 to 2014.
Terrestrial Invertebrates
Title Abstract
Abundance of major taxonomic groups of invertebrates (arthropods and gastropods) collected with pitfall traps at four sites near Toolik Field Station Arctic LTER, Alaska in the summer of 2010.
Invertebrates (spiders, insects and slugs) were collected weekly using pitfall traps at four sites near the Arctic LTER at Toolik Field Station, Alaska. Traps were placed along transects in shrub (shrub-dominant) and open (tussock-dominant) tundra sites. Pitfall traps were placed for 48-hour intervals once per week from early June until mid-July 2010. Collected invertebrates were counted and identified to class (all invertebrates), order or family (for some of the most common families... more
Terrestrial Soil Microfuna and Microflora
Title Abstract
Belowground foodweb biomass from moist acidic tundra and dry heath tundra nutrient addition and herbivore exclusion plots (since 1996) sampled Summer 2006
Biomass of belowground community groups (bacteria, fungi, protozoa, nematodes, rotifers, tardigrades) determined for organic soils in moist acidic tundra and dry heath tundra.
Thermokarst Soil
Title Abstract
Surface soil characteristics for six thermokarst chronosequences near Toolik Field Station and Noatak National Preserve, Alaska
Surface organic and mineral soil layers were sampled in retrogressive thaw slump disturbance scars and nearby undisturbed tundra to estmate the influence of this thermo-erosional--thermokarst--disturbance type on soil carbon (C) and nitrogen (N) pools. Within six independent sites, we identified multiple thaw slump scars and determined time after disturbance for each scar by (1) aging the population of tall deciduous shrubs rooted in the mineral soil and (2) by dating the basal layer of... more
Ground temperature at and near I-Minus-2 thermokarst sites around Toolik Lake Field Station, Alaska, Summer 2009-Summer 2012
Ground temperatures were measured hourly at ~20-50cm intervals below the ground surface inside and adjacent to thermokarst features in the region around Toolik Field Station. Ground temperatures were measured using Hobo thermistors. Temperatures at 0 and 20cm depths were measured directly in the ground whereas 40cm and deeper measurements were logged from dry wells installed in summer 2009. IM2_GT01dot06_temp is located inside of the I-Minus-2 Gulley thermokarst, downslope.
Meteorological data near thermokarst sites around Toolik Lake Field Station, Summer 2009-Summer 2012
GroMeteorological parameters were measured hourly adjacent to thermokarst features in the region around Toolik Field Station. Pressure, rainfall, wind speed and direction, solar radiation, air temperature and relative humidity were all measured at 1-3m above the ground surface with an Onset U30 weather station connected to all sensors.
Ground temperature at and near NE 14 thermokarst sites around Toolik Lake Field Station, Alaska, Summer 2009-Summer 2012
Ground temperatures were measured hourly at ~20-50cm intervals below the ground surface inside and adjacent to thermokarst features in the region around Toolik Field Station. Ground temperatures were measured using Hobo thermistors. Temperatures at 0 and 20cm depths were measured directly in the ground whereas 40cm and deeper measurements were logged from dry wells installed in summer 2009. NE14_TS02dot02_temp is located in the old NE14 thermokarst, upslope.
Ground temperature at and near Toolik River thermokarst sites around Toolik Lake Field Station, Alaska, Summer 2009-Summer 2012
Ground temperatures were measured hourly at ~20-50cm intervals below the ground surface inside and adjacent to thermokarst features in the region around Toolik Field Station. Ground temperatures were measured using Hobo thermistors. Temperatures at 0 and 20cm depths were measured directly in the ground whereas 40cm and deeper measurements were logged from dry wells installed in summer 2009. TRTK_GT01dot05_temp is located outside the TRTK thermokarst, midslope.
Terrestrial Soil Properties
Title Abstract
2010 thaw depth and soil temperature in LTER moist acidic tundra experimental plots
In 2010, thaw depth and soil temperature were measured throughout the growing season in control and fertilized plots in the Arctic LTER's moist acidic tundra sites.
Mass, C, N, and lignin from litter decomposed across a shrub gradient and with snow manipulations near Toolik Field Station between 2003 and 2009.
In arctic tundra near Toolik Lake, Alaska, we incubated a common substrate in a snow addition experiment to test whether snow accumulation around arctic deciduous shrubs altered the environment enough to increase litter decomposition rates. We compared the influence of litter quality on the rate of litter and N loss by decomposing litter from four different plant functional types in a common site. We used aboveground net primary production values and estimated k values from our... more
Net nitrogen mineralization from shrub gradient and snow manipulations, near Toolik field station, collect in the summer of 2006 and winter of 2006-2007
In arctic tundra, near Toolik Lake, Alaska, we quantified net N-mineralization rates under ambient and manipulated snow treatments at three different plant communities that varied in abundance and height of deciduous shrubs. Our objective was twofold: 1) to test whether the amount of snow that accumulates around arctic deciduous shrubs maintains winter soil temperatures high enough to stimulate microbial activity and increase soil N levels (effect of soil microclimate) and 2) to compare... more
Subscribe to Toolik Field Station