fertilization

Stream networks are intimately connected to the landscapes through which they flow and significantly transform nutrients and organic matter that are in transport from landscapes to oceans. This work will quantify the relative influences of throughflow, lateral inputs, and hyporheic (a layer of surface sediments that contains water which exchanges continuously with water in the open channel) regeneration on the seasonal fluxes of C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. This objective is a logical extension of earlier. This work will focus on seasonal dynamics at different river reach scales (1st to 4th order streams) and will lay the groundwork for a whole river network model to integrate the influences of throughflow, lateral inputs, hyporheic regeneration, and in-stream metabolism on C, N, and P fluxes through an entire river network.
For more information see project's web site:  Changing Seasonality and Arctic Stream Networks

Changing Seasonality and Arctic Stream Networks
Title Abstract
CSASN Nutients: Tracer addition for spiraling curve characterization from 2010 to 2012
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location. The... more
Nutrient and tracer amounts for Tracer Additions for Spiraling Curve Characterization studies on arctic streams near Toolik Field Station, Alaska 2010 -2012.
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of tracer addition for spiraling curve characterization (TASCC) and... more
CSASN TASCC Nutrient additions to streams near Toolik Field Sation, Alaska 2010 to 2012
The Changing Seasonality of Artic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of throughflow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location. The... more
FishScape Common Garden
Title Abstract
Growth data for young of the year arctic grayling raised in a aquatic common garden at Toolik Field Station, summer 2017
Since 2009, the FISHSCAPE  Project (Grant #1719267, 1417754, and 0902153), based at Toolik Field Station, has monitored physical, chemical, and biological parameters within three watersheds: The Kuparuk (including Toolik Lake and Toolik outlet stream); The Sagavanirktok (primarily Oksrukuyik Creek, but also including sections of the Ailish and Atigun Rivers and the Galbraith Lakes);  and The Itkillik (primarily the I-Minus outlet stream, a tributary that that feeds into the Itkilik River).... more
Survivorship data for yong of the year Arctic grayling raised in a aquatic common garden at Toolik Field Station, summer 2017
Since 2009, the FISHSCAPE  Project (grant #  1719267, 1417754, and 0902153), based at Toolik Field Station, has monitored physical, chemical, and biological parameters within three watersheds: The Kuparuk (including Toolik Lake and Toolik outlet stream); The Sagavanirktok (primarily Oksrukuyik Creek, but also including sections of the Ailish and Atigun Rivers and the Galbraith Lakes);  and The Itkillik (primarily the I-Minus outlet stream, a tributary that that feeds into the Itkilik River... more
FishScape Genomics
Title Abstract
Arctic grayling neutral genomic microsatellite loci from the Kuparuk, the Sagavanirktok (primarily Oksrukuyik Creek) and the Itkillik (primarily the I-Minus outlet stream) watersheds, 2010-2014
Since 2009, The FISHSCAPE Project (National Science Foundation grants: 1719267, 1417754, and 0902153), based at Toolik Field Station, has monitored physical, chemical, and biological parameters within three watersheds: The Kuparuk (including Toolik Lake and Toolik outlet stream), The Sagavanirktok (primarily Oksrukuyik Creek, but also including sections of the Atigun River and Tea and Galbraith Lakes), and Itkillik (primarily the I-Minus outlet stream a tributary that that feeds into the... more
FishScape Tag Data
Title Abstract
Fish tag data remotely detected using whole stream antennas or hand held tag readers in the Kuparuk, Itkilik, and Sagavanirktok drainages near Toolik Field Station, Alaska, from 2010 to 2017
From 2009 to 2017, the FISHSCAPE Project (grant numbers 1719267, 1417754, and 0902153), based at Toolik Field Station, has monitored physical, chemical, and biological parameters within three watersheds: The Kuparuk (including Toolik Lake and Toolik outlet stream); The Sagavanirktok (primarily Oksrukuyik Creek, but also including sections of the Ailish and Atigun Rivers and the Galbraith Lakes); and The Itkillik (primarily the I-Minus outlet stream, a tributary that that feeds into the... more
Fish tagging data (length, weight, tag number) from the Kuparuk, the Sagavanirktok (primarily Oksrukuyik Creek) and the Itkillik (primarily the I-Minus outlet stream) watersheds, 2009 - 2017
Since 2009, the FISHSCAPE  Project (grant number  1719267, 1417754, and 0902153), based at Toolik Field Station, has monitored physical, chemical, and biological parameters within three watersheds: The Kuparuk (including Toolik Lake and Toolik outlet stream); The Sagavanirktok (primarily Oksrukuyik Creek, but also including sections of the Ailish and Atigun Rivers and the Galbraith Lakes);  and The Itkillik (primarily the I-Minus outlet stream, a tributary that that feeds into the Itkilik... more
Terrestrial Biomass
Title Abstract
Above ground plant biomass in a mesic acidic tussock tundra experimental site 2000, Arctic LTER, Toolik Lake, Alaska.
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for control and fertilized plots. Leaf area data is in 2000gsttLA
Above ground plant biomass in a mesic acidic tussock tundra experimental site from 1982 to 2000 Arctic LTER, Toolik Lake, Alaska.
Above ground plant biomass and leaf area were measured in a moist acidic tussock tundra experimental site. The plots were set up in 1981 and have been harvested in periodical (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31. Mack, et al, Nature 2004 431:440-443) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for harvests through 2000. Leaf area data is presented in other data files (see http://ecosystems.mbl.... more
Weather Moist Acidic Tussock (MAT)
Title Abstract
Daily summary of 10 cm soil temperatures in the Arctic LTER moist acidic experimental plots from 1998 to present, Toolik Lake Field Station, Alaska.
Daily summary of 10 cm soil temperatures in the Arctic LTER moist acidic experimental plots for the control (CT), greenhouse (GH), greenhouse plus nitrogen and phosphorus (GHNP) and nitrogen and phosphorus (NP) plots. Soil temperature probes in the tundra soil were problematic with frost heaving causing the depth of measurements to change. In order to provide a consistent year to year temperature record notes on changes in depths were used to select the temperature sensor that was within +... more
Streams Fish
Title Abstract
Arctic Grayling length, weight and tag data from Arctic LTER Streams project, Toolik Field Station Alaska, 1985 to Present.
Since 1983, the Streams Project at the Toolik Field Station has monitored physical, chemical, and biological parameters in a 5-km, fourth-order reach of the Kuparuk River near its intersection with the Dalton Highway and the Trans-Alaska Pipeline. In 1989, similar studies were begun on a 3.5-km, third-order reach of a second stream, Oksrukuyik Creek. Fish were collected on each river. Station locations, representing kilomter values certain distances from original phosphorus dripper (see... more
Weather Wet Sedge
Title Abstract
Soil temperature data collected from the Arctic LTER wet sedge experimental site Toolik Field Station North Slope, Alaska from 1994 to present.
Soil temperature data collected every 4 hours from a wet sedge site at the Arctic Tundra LTER site at Toolik Lake. Temperatures are measured every 3 minutes and averaged every 4 hours in control, nitrogen alone, phosphorus alone, nitrogen and phosphorus, and greenhouse experimental plots soil temperatures.
Terrestrial Soil Microfuna and Microflora
Title Abstract
Belowground foodweb biomass from moist acidic tundra and dry heath tundra nutrient addition and herbivore exclusion plots (since 1996) sampled Summer 2006
Biomass of belowground community groups (bacteria, fungi, protozoa, nematodes, rotifers, tardigrades) determined for organic soils in moist acidic tundra and dry heath tundra.
Terrestrial Reflectance
Title Abstract
Vegetation indices calculated from reflectance spectra collected at LTER plots at Toolik Lake, Alaska during the 2007-2016 growing seasons.
Vegetation indices calculated from reflectance spectra collected at Arctic LTER plots at Toolik Lake, Alaska during the 2007-2016 growing seasons. Canopy reflectance was measured using a dual channel spectrophotometer (Unispec DC, PP Systems, Amesbury, Massachusetts, USA). Spectral indices were calculated for NDVI (MODIS, EVI (MODIS), EVI2 (MODIS), PRI (550 Reference), PRI (570 Ref), WBI and Chl Index
Terrestrial Soil Properties
Title Abstract
Extracellular enzyme activities in soils from Arctic LTER moist acidic tundra nutrient addition plots, Toolik Field Station, Alaska, sampled July 2011.
Soil samples were collected from control, and N+P plots from within a set of treatments in Arctic LTER Moist Acidic Tundra plots established in 1989 and in 2006 . At the time of sampling the soil was separated into organic horizon, organic/mineral interface, and the upper 5cm of the mineral soil. In the lab the potential activities of seven hydrolytic enzymes was determined using fluorometric techniques (Saiya-Cork et al. 2002) modified following Steinweg et al(.2012).
Modeling
Title Abstract
Long-term changes in tundra carbon balance following wildfire, climate change and potential nutrient addition, a modeling analysis.
A study investigating the mechanisms that control long-term response of tussock tundra to fire and to increases in air temperature, CO2, nitrogen deposition and phosphorus weathering. The MBL MEL was used to simulate the recovery of three types of tussock tundra, unburned, moderately burned, and severely burned in response to changes in climate and nutrient additions. The simulations indicate that the recovery of nutrients lost during wildfire is difficult under a warming climate because... more
Subscribe to fertilization