physical processes

AON Imnavait
Title Abstract
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2018 - Provisional
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2018 - Provisional
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2018 - Provisional
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data  points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2017
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2017
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data  points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2017
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2016
The Biocomplexity Station, now known as the Tussock Station, was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska.  The station is now contributing valuable data to the AON project that was established at two nearby stations.  These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2016
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2016
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data  points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2014
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2014
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2014
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2015
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data  points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2015
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2015
The Biocomplexity Station, now known as the Tussock Station, was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska.  The station is now contributing valuable data to the AON project that was established at two nearby stations.  These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2013
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2013
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2013
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2012
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2012
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2012
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2011
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2011
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2011
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2010
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2010
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2010
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2009
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2008
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2008
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2009
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2009
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of... more
Eddy Flux Measurements, Fen Station, Imnavait Creek, Alaska - 2007
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Ridge Station, Imnavait Creek, Alaska - 2007
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnavait Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project focuses... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2008
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2007
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2006
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of... more
Eddy Flux Measurements, Tussock Station, Imnavait Creek, Alaska - 2005
The Biocomplexity Station was established in 2005 to measure landscape-level carbon, water and energy balances at Imnavait Creek, Alaska. The station is now contributing valuable data to the AON project that was established at two nearby stations. These will form part of a network of observatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of... more
Burn Terrestrial Data
Title Abstract
Anaktuvuk River Burn Eddy Flux Measurements, 2012 Unburned Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2012 post fire energy and mass exchange at the unburned site.
Anaktuvuk River Burn Eddy Flux Measurements, 2012 Moderate Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2012 post fire energy and mass exchange at the moderate burn site.
Anaktuvuk River Burn Eddy Flux Measurements, 2011 Unburned Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2011 post fire energy and mass exchange at the unburned site.
Anaktuvuk River Burn Eddy Flux Measurements, 2011 Severe Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2011 post fire energy and mass exchange at the severe burn site.
Anaktuvuk River Burn Eddy Flux Measurements, 2011 Moderate Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2011 post fire energy and mass exchange at the moderate burn site.
Anaktuvuk River Burn Eddy Flux Measurements, 2010 Unburned Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2010 post fire energy and mass exchange at the unburned site.
Anaktuvuk River Burn Eddy Flux Measurements, 2010 Moderate Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2010 post fire energy and mass exchange at the moderate burn site.
Anaktuvuk River Burn Eddy Flux Measurements, 2009 Severe Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2009 post fire energy and mass exchange at the severe burn site.
Anaktuvuk River Burn Eddy Flux Measurements, 2009 Unburned Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2009 post fire energy and mass exchange at the unburned site.
Anaktuvuk River Burn Eddy Flux Measurements, 2008 Moderate Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the first post fire growing season's energy and mass exchange at the moderate burn site.
Anaktuvuk River Burn Eddy Flux Measurements, 2009 Moderate Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2009 post fire energy and mass exchange at the moderate burn site.
Changing Seasonality and Arctic Stream Networks
Title Abstract
discharge data from Peat Inlet near Toolik Field Station, Alaska, summer 2010
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from Peat Inlet stream, 2010 season.
Discharge data from I8 Inlet, near Toolik Field Station, Alaska, summer 2010
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Inlet stream, 2010 season.
daily average discharge data from Peat Inlet near Toolik Field Station, Alaska, summer 2011
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from Peat Inlet stream, 2011... more
Daily average discharge data from I8 Inlet, near Toolik Field Station, Alaska, summer 2011
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Inlet stream, 2011... more
daily average discharge data from I8 Outlet near Toolik Field Station, Alaska, summer 2011
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed from 2011 - 2012 summer/fall seasons. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Outlet stream, 2011... more
CSASN TASCC Nutrient additions to streams near Toolik Field Sation, Alaska 2010 to 2012
The Changing Seasonality of Artic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of throughflow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location. The... more
Discharge data from I8 Outlet near Toolik Field Station, Alaska, summer 2010
As a part of the CSASN project, daily average discharge was estimated in three streams within the Toolik Inlet watershed. HOBO U20 data loggers were used for stage (water depth) data acquisition, and a rating curve relationship between stage and occasional dilution gauged discharge measurements was established to transform continuous stage measurements to continuous discharge measurements. The data included in this file is from I8 Outlet stream, 2010 season.
Ecotypes Transplant Garden
Title Abstract
Air and soil temperature in warmed and control plots of 2014 reciprocal transplant gardens Toolik Lake, Coldfoot, and Sagwon, Alaska 2015 and 2016
Air and soil temperatures from iButtons located at reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2015 and 2016. The reciprocal transplant gardens at Coldfoot (CF), Toolik Lake (TL), Sagwon (SG) Each plot contains three tussocks, 30-50 centimeters apart
Thermokarst Lakes
Title Abstract
Temperature and discharge data for lake NE 14 Outlet near Toolik Lake, Alaska, during the 2011 summer field season.
File contains temperature and discharge data for Lake NE 14 Outlet during the 2011 summer field season.
Temperature and discharge data for lake NE 14 Outlet near Toolik Lake, Alaska, during the 2010 summer field season.
File contains temperature and discharge data for Lake NE 14 Outlet during the 2010 summer field season.
Temperature and discharge data for lake NE 14 Outlet near Toolik Lake, Alaska, during the 2009 summer field season.
File contains temperature and discharge data for lake NE 14 Outlet during the 2009 summer field season.
Toolik Lake Inlet Discharge
Title Abstract
Toolik Inlet Discharge Data collected during summers of 2010 to 2014, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, temperature, and conductivity of Toolik Inlet during the 2010, 2012, 2013 study season. Data from 2011 still has problems and will be added later.
Toolik Inlet Discharge Data collected in summer 2009, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 2009 study season.
Toolik Inlet Discharge Data collected in summer 2008, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 2008 study season.
Toolik Inlet Discharge Data collected in summer 2007, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 2007 study season.
Toolik Inlet Discharge Data collected in summer 2006, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 2006 study season. Water level was recorded with a Stevens PGIII Pulse Generator and water temperature and conductivity with a Campbell Scientific Model 247 Conductivity (EC) and Temperature probe. A Campbell Scientific CR510 data logger logged the data.
Toolik Inlet Discharge Data collected in summer 2005, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 2005 study season. Water level was recorded with a Stevens PGIII Pulse Generator and water temperature and conductivity with a Campbell Scientific Model 247 Conductivity (EC) and Temperature probe. A Campbell Scientific CR510 data logger logged the data.
Toolik Inlet Discharge Data collected in summer 2004, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, temperature, and conductivity of Toolik Inlet during the 2004 study season.  Discharge measurements were taken throughout each season to determine the stage-discharge relationship.
Toolik Inlet Discharge Data collected in summer 2003, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 2003 study season.
Toolik Inlet Discharge Data collected in summer 2002, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 2002 study season.
Toolik Inlet Discharge Data collected in summer 2001, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 2001 study season.
Toolik Inlet Discharge Data collected in summer 2000, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 2000 study season.
Toolik Inlet Discharge Data collected in summer 1999, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 1999 study season.
Toolik Inlet Discharge Data collected in summer 1998, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 1998 study season.
Toolik Inlet Discharge Data collected in summer 1997, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 1997 study season.
Toolik Inlet Discharge Data collected in summer 1996, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 1996 study season.
Toolik Inlet Discharge Data collected in summer 1995, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 1995 study season.
Toolik Inlet Discharge Data collected in summer 1993, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 1993 study season.
Toolik Inlet Discharge Data collected in summer 1991, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 1991 study season.
Toolik Inlet Discharge Data collected in summer 1992, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 1992 study season.
Weather Moist Acidic Tussock (MAT)
Title Abstract
Daily summary of 10 cm soil temperatures in the Arctic LTER moist acidic experimental plots from 1998 to present, Toolik Lake Field Station, Alaska.
Daily summary of 10 cm soil temperatures in the Arctic LTER moist acidic experimental plots for the control (CT), greenhouse (GH), greenhouse plus nitrogen and phosphorus (GHNP) and nitrogen and phosphorus (NP) plots. Soil temperature probes in the tundra soil were problematic with frost heaving causing the depth of measurements to change. In order to provide a consistent year to year temperature record notes on changes in depths were used to select the temperature sensor that was within +... more
Tussock Watershed Discharge
Title Abstract
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2005
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2005.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2004
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2004.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2003
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2003.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2002
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2002.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2001
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2001.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2000
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 2000.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1999
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1999.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1998
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1998.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1997
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1997.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1996
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1996.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1995
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1995.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1994
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1994.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1993
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1993.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1992
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1992.
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1991
Tussock Watershed stream discharge, electrical conductivity, and temperature measurements from 1991.
AON Cherskii
Title Abstract
Eddy Flux Measurements, Pleistocene Park, Cherskii, Russia - 2016
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data  points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Pleistocene Park, Cherskii, Russia - 2014
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Pleistocene Park, Cherskii, Russia - 2015
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia.  These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data  points as part of the International Polar Year.  This particular part of the project... more
Eddy Flux Measurements, Pleistocene Park, Cherskii, Russia - 2012
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Pleistocene Park, Cherskii, Russia - 2013
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Pleistocene Park, Cherskii, Russia - 2011
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Pleistocene Park, Cherskii, Russia - 2010
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Pleistocene Park, Cherskii, Russia - 2008
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Eddy Flux Measurements, Pleistocene Park, Cherskii, Russia - 2009
In contribution to the Arctic Observing Network (AON), the researchers have established two observatories of landscape-level carbon, water and energy balances at Imnaviat Creek, Alaska and at Pleistocene Park near Cherskii, Russia. These will form part of a network of obervatories with Abisko (Sweden), Zackenburg (Greenland) and a location in the Canadian High Arctic which will provide further data points as part of the International Polar Year. This particular part of the project... more
Landscape Interactions Discharge
Title Abstract
Toolik Inlet Discharge Data collected in summer 1994, Arctic LTER, Toolik Research Station, Alaska.
Stream discharge, stage height, temperature, and conductivity of Toolik Inlet during the 1994 study season.
Multi-trophic Impacts Weather
Title Abstract
Daliy weather data (wind, temperatrue, humididty, pressure, precipitation) from Roche Mountonnee , in the northern foothills of the Brooks Range, Alaska, summers 2010-2014.
Daily weather data from mid May to late July 2011 to 2013 from Roche Moutonnee (south of Toolik Field Station and Arctic LTER), in the northern foothills of the Brooks Range, Alaska. Parameters measured include: wind speed, wind directions, temperature, humidity, pressure and precipitation.
Daliy weather data from Sagavanirktok River DOT site, in the northern foothills of the Brooks Range, Alaska, May-July 2010-2014.
Daliy weather data from mid May to late July 2011 to 2013 from Sagavanirktok Department of Transport (DOT) site (south of Toolik Field Station and Arctic LTER), in the northern foothills of the Brooks Range, Alaska. Parameters measured include: wind speed, wind directions, temperatrue, humididty, pressure and precipitation. (Rich, et al 2013).
Weather Toolik Field Station Met
Title Abstract
Daily weather summaries from Toolik Field Station Meteorological Station, Toolik Lake, Alaska for 2009.
Daily weather summaries from Toolik Field Station Meteorological Station, Toolik Lake, Alaska. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and precipitation recorded near Toolik Lake.
Daily weather summaries from Toolik Field Station Weather Station, Toolik Lake ARC LTER, Alaska for 2008.
Daily weather summaries from Toolik Field Station Meteorological Station, Toolik Lake, Alaska. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and precipitation recorded near Toolik Lake.
Daily weather summaries from Toolik Field Station Meteorological Station, Toolik Lake, Alaska for 2006.
Daily weather summaries from Toolik Field Station Meteorological Station, Toolik Lake, Alaska. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and precipitation recorded near Toolik Lake.
Daily weather summaries from Toolik Field Station Meteorological Station, Toolik Lake, Alaska for 2005.
Daily weather summaries from Toolik Field Station Meteorological Station, Toolik Lake, Alaska. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and precipitation recorded near Toolik Lake.
Daily weather summaries from Toolik Field Station Meteorological Station, Toolik Lake, Alaska for 2004.
Daily weather summaries from Toolik Field Station Meteorological Station, Toolik Lake, Alaska. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, 2003.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 2002.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 2001.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 2000.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 1999.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 1998.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 1997.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 1996.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 1995.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 1994.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 1993.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Field Station, Norht Slope, AK 1992
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums

and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 1991.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included in this file are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation
Daily weather data file for Arctic Tundra LTER site at Toolik Field Station, AK, Arctic LTER 1990.
Daily weather data file for Arctic Tundra LTER site at Toolik Field Station, AK. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 1989.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Daily weather data file for Arctic Tundra LTER site at Toolik Field Station, Norht Slope, AK 1988.
Daily weather data file for Arctic Tundra LTER site at Toolik Lake. Included are daily averages and/or maximums and minimums of air, soil and lake temperature, wind speed, vapor pressure, and sum of global radiation and unfrozen precipitation recorded near Toolik Lake.
Streams Metabolism
Title Abstract
Kuparuk River Whole Stream Metabolism Toolik Field Station Alaska 2012-2015
The Kuparuk River has been the central research location on the impact of added phosphorus to arctic streams. Additions of phosphorus occred since 1983. Today, 4 specific reaches show certain characteristics based on the years that they recieved fertilization. Whole Stream Metabolism is a way to quantify primary production of this stream system. Calculations were done using dissolved oxygen, discharge, stage, light and temperature measured by sondes and other equipment strategically... more
Thermokarst Streams
Title Abstract
ARCSSTK WSM
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. Specifically, the ARCSSTK goal Streams goal was to quantify the relative influences of thermokarst inputs on the biogeochemical structure and function of receiving streams. Whole Stream Metabolism was calculated using dissolved oxygen, discharge, stage, and temperature measured by sondes deployed in the field.
Lakes Physical and Chemical Parameters
Title Abstract
Sedimentation rate, concentration of macronutrients and flux for NE14, Toolik, Dimple, Perched during Summer 2009.
We measured the flux of bulk material and major macronutrients (carbon, nitrogen and phosphorus) from the water column to the benthos in four separate lakes during the summer of 2009. The lakes were chosen to investigate the impacts of disturbance on lake sedimentation. Two of the lakes, Dimple and Perched, were within catchments that were burned by the 2007 Anaktuvuk River wildfire. Two of the lakes, NE-14 and Perched, were receiving elevated sediment loads from thermokarst failures on... more
Streams Temperature Discharge
Title Abstract
Kuparuk River 2013 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, dataloggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Temperature was also measured on an hourly basis. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Mean daily discharge and water temperature data for Oksrukuyik Creek near Dalton Highway, North Slope Alaska from June to September, 2010 to present.
Oksrukuyik Creek stage height and calculated discharge for the summer of 2010 to present. In 2010 temperature and depth were recorded by a Campbell CR10 data logger and HOBO pressure transducer. From 2011 and forward only the Hobo was used. Starting in 2009 measurements were taken at a new location, about 100 meters upstream of the road. This location moved upstream of the road do to the construction of a culvert.
Kuparuk River 2012 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Temperature was also measured on an hourly basis. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Kuparuk River 2011 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, dataloggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Temperature was also measured on an hourly basis. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Oksrukuyik Creek 2012 summer temperature and discharge calculated from stage height.
Oksrukuyik Creek stage height and calculated discharge for the summer of 2012 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 datalogger and HOBO pressure transducer. Measurements were taken at a new location, about 100 meters upstream of the road, starting in 2009. This location moved upstream of the road do to the construction of a culvert.
Oksrukuyik Creek 2011 summer temperature and discharge calculated from stage height.
Oksrukuyik Creek stage height and calculated discharge for the summer of 2011 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 datalogger and HOBO pressure transducer. Measurements were taken at a new location, about 100 meters upstream of the road, starting in 2009. This location moved upstream of the road do to the construction of a culvert.
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2010
Oksrukuyik Creek stage height and calculated discharge for the summer of 2010 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger and HOBO pressure transducer. Measurements were taken at a new location, about 100 meters upstream of the road, starting in 2009. This location moved upstream of the road do to the construction of a culvert.
Kuparuk River 2010 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, dataloggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Temperature was also measured on an hourly basis. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2009
Oksrukuyik Creek stage height and calculated discharge for the summer of 2009 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger and HOBO pressure transducer. Measurements were taken at a new location, about 100 meters upstream of the road. This location moved upstream of the road do to the construction of a culvert.
Kuparuk River 2009 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River in 2009. In many years, temperature and stream height were recorded manually each day. In recent years, dataloggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Temperature was also measured on an hourly basis. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Kuparuk River 2008 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River. In recent years, pressure transducer dataloggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Temperature was also measured on an hourly basis. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2008
Oksrukuyik Creek stage height and calculated discharge for the summer of 2008 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 2007 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River. In recent years, pressure transducer dataloggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2007
Oksrukuyik Creek stage height and calculated discharge for the summer of 2007 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 2006 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River in 2006

. In recent years, pressure transducer dataloggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2006
Oksrukuyik Creek stage height and calculated discharge for the summer of 2006 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 2005 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River. In recent years, pressure temperature dataloggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2005
Oksrukuyik Creek stage height and calculated discharge for the summer of 2005 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 2004 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge were determined for the Kuparuk River. In recent years, dataloggers have measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Stage height was measured on the Kuparuk about 1 km above the Dalton Highway crossing.
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2004
Oksrukuyik Creek stage height and calculated discharge for the summer of 2004 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 2003 summer temperature and discharge calculated from stage height.
Water temperature and stream discharge for Kuparuk river in 2003. In recent years, a pressure transducer datalogger has measured stream temperature and stream height at regular intervals. A rating curve was developed to calculate continuous discharge from stage height. Stage height was measured on the Kuparuk about 1 km upstream of the Dalton Highway crossing.
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2003
Oksrukuyik Creek stage height and calculated discharge for the summer of 2003 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2002
Oksrukuyik Creek stage height and calculated discharge for the summer of 2002 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 2002 summer temperature and discharge calculated from stage height.
Stream temperature and discharge for the Kuparuk River in 2002. Each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, dataloggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/... more
Kuparuk River 2001 summer temperature and discharge calculated from stage height.
Stream temperature and discharge for the Kuparuk river in 2001. Each summer, water temperature and stream discharge are determined for the Kuparuk River. In recent years, dataloggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Doug Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream height is converted into stream discharge based on... more
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2001
Oksrukuyik Creek stage height and calculated discharge for the summer of 2001 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 2000 summer temperature and discharge calculated from stage height.
Stream temperature and discharge Each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 2000
Oksrukuyik Creek stage height and calculated discharge for the summer of 2000 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Mean daily discharge, stage height and water temperature data for Oksrukuyik Creek from June to September, 1999
Oksrukuyik Creek stage height and calculated discharge for the summer of 1999 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 1999 summer temperature and discharge calculated from stage height.
Stream temperature and discharge Each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Kuparuk River 1998 summer discharge calculated from stage height.
Discharge Each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream height is converted into stream... more
Mean daily discharge, stage height and water temperature data for Oksrukuyik Creek from June to September, 1998
Oksrukuyik Creek stage height and calculated discharge for the summer of 1998 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 1997 summer temperature and discharge calculated from stage height.
Stream temperature and discharge Each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Mean daily discharge, stage height and water temperature data for Oksrukuyik Creek from June to September, 1997
Oksrukuyik Creek stage height and calculated discharge for the summer of 1997 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 datalogger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 1996 summer temperature and discharge calculated from stage height.
Stream temperature and discharge Each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Mean daily discharge, stage height and water temperature data for Oksrukuyik Creek from June to September, 1996
Oksrukuyik Creek stage height and calculated discharge for the summer of 1996 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 1995 summer temperature and discharge calculated from stage height.
Stream temperature and discharge Each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, dataloggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Mean daily discharge, stage height and water temperature data for Oksrukuyik Creek from June to September, 1995
Oksrukuyik Creek stage height and calculated discharge for the summer of 1995 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 1994 summer temperature and discharge calculated from stage height.
Stream temperature and discharge Each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Mean daily discharge, stage height and water temperature data for Oksrukuyik Creek from June to September, 1994
Oksrukuyik Creek stage height and calculated discharge for the summer of 1994 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Mean daily discharge, stage height and water temperature data for Oksrukuyik Creek from June to September, 1993
Oksrukuyik Creek stage height and calculated discharge for the summer of 1993 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements were taken about 10 meters downstream of the road (2.6k below the original N and P dripper). In Summer 2009, this location moved upstream of the road, do to the construction of a culvert.
Kuparuk River 1993 summer temperature and discharge calculated from stage height.
Stream temperature and discharge Each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Mean daily discharge, stage height and water temperature data for Oksrukuyik Creek from June to September, 1992
Oksrukuyik Creek stage height and calculated discharge for the summer of 1992 as well as Oksrukuyik Creek continuous temperature recorded by a Campbell CR10 data logger. Measurements came from the USGS.
Kuparuk River 1992 summer temperature and discharge calculated from stage height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Mean daily discharge, stage height and water temperature data for Oksrukuyik Creek from June to September, 1991
Oksrukuyik Creek stage height and calculated discharge for the summer of 1991 as well as Oksrukuyik Creek temperature. Measurements came from the USGS.
Kuparuk River 1991 summer temperature and discharge calculated from stage height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Mean daily discharge and stage height data for Oksrukuyik Creek from June to September, 1990
Oksrukuyik Creek stage height and calculated discharge for the summer of 1990 recorded by a Campbell CR10 data logger. Measurements came from the USGS.
Kuparuk River 1990 summer temperature and discharge calculated from stage height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Kuparuk River 1989 summer temperature and discharge calculated from stage height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Mean daily discharge and water temperature data for Oksrukuyik Creek from June to September, 1989
Oksrukuyik Creek stage height and calculated discharge for the summer of 1989 as well as Oksrukuyik Creek temperature. Measurements came from the USGS. Only calculated results for discharge were available for 1989.
Mean daily discharge data for Oksrukuyik Creek for mid May-Septemeber 1988, calculated from data acquired from USGS-Fairbanks, Arctic LTER 1988.
Mean daily discharge data for Oksrukuyik Creek for mid May-Septemeber 1988, calculated from data acquired from USGS-Fairbanks.
More detailed methods of their Hydrologic Unit, calibration measurements and regression curve were not available at the time of this file.
Kuparuk River 1988 summer temperature and discharge calculated from stage height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Kuparuk River 1987 summer discharge calculated from stage height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Kuparuk River 1986 summer temperature and discharge calculated from stage height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Kuparuk River 1985 summer temperature and discharge calculated from state height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Kuparuk River 1984 summer discharge calculated from stage height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Kuparuk River 1983 summer discharge calculated from stage height.
Stream temperature and discharge each summer, water temperature and stream discharge are determined for the Kuparuk River. In many years, temperature and stream height were recorded manually each day. In recent years, data loggers have measured stream temperature and stream height at regular intervals. The Kuparuk River data is maintained by Dough Kane on the Water and Environmental Research Center at UAF (http://www.uaf.edu/water/projects/NorthSlope/upper_kuparuk/uk_river/uk_r...) Stream... more
Terrestrial Precipitation Chemistry
Title Abstract
Bulk precipitation collected during summer months on a per rain event basis at Toolik Field Station, North Slope of Alaska, Arctic LTER 1988 to 2007.
Bulk precipitation was collected during summer months (June, July and August) on a per rain event basis at the University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W). Analysis of pH, NH4-N and phosphorus were performed at the field station. NO3-N were frozen and analyzed in Woods Hole, MA
Precipitation cations and anions for June, July and August from a wet/dry precipitation, University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W), Arctic LTER 1989 to 2003
Precipitation, collected from a wet/dry precipitation collector located near University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W) was sent out for standardized EPA rain water analysis. Nutrient chemistry was also run on a sub sample at the field station.
Terrestrial Soil Properties
Title Abstract
Late season thaw depth measured in the ARC LTER moist acidic tussock experimental plots at Toolik Field station, AK Arctci LTER 1993 to current year.
Late season thaw depth was measured in the ARC LTER experimental plots (Moist Acidic Tussock, Moist Non-acidicTussock, Moist Non-acidic Non-tussock, Wet Sedge) at Toolik Lake, AK using a thaw probe.
Fire in the Arctic Landscape
Title Abstract
Anaktuvuk River Burn Eddy Flux Measurements, 2012 Severe Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2012 post fire energy and mass exchange at the severe burn site.
Anaktuvuk River Burn Eddy Flux Measurements, 2010 Severe Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the 2010 post fire energy and mass exchange at the severe burn site.
Anaktuvuk River Burn Eddy Flux Measurements, 2008 Severe Burn Site, North Slope Alaska
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the first post fire growing season's energy and mass exchange at the severe burn site.
Anaktuvuk River Burn Eddy Flux Measurements, 2008 Unburned Site, North Slope Alaska.
We deployed three eddy covariance towers along a burn severity gradient (i.e. severely-, moderately-, and un-burned tundra) to monitor post fire Net Ecosystem Exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar during the summer of 2008. This data represents the first post fire growing season's energy and mass exchange at the unburned site.
Subscribe to physical processes