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Arctic LTER Project

Research of the Arctic LTER:
Synthesis

* How we do synthesis, imp of collaborating projects
e Within-site synthesis
Synthesis Book—58 coauthors

Lakes, Streams, Terrestrial, Land-water synthesis (previous
presentations)

 Network and multisite synthesis

e Ecological theory: Moore and deRuiter Ecological
Energetics

e Overall project: Fire in the Arctic Landscape
e PanArctic synthesis: Canopy-level controls on NEE
e Current within-site synthesis projects:

Trophic structure
C, N budgets
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GPP McGuire et al. 2000:

NEP of PanArctic
tundra varies from
-30 to +40 g C/m?ly,

NEP of Kuparuk
watershed is currently
~15-20 g C/m?ly

Change in NEP due
to climate change is
<1.0 g C/m?ly



Something new on the horizon
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COMBUSTION LOSSES
VS ANNUAL NEE OF
KUPARUK BASIN:

C loss by combution was
~2.16 Tg over 1039 km2
(measured by Mack et al 2011)

e - g

Annual NEE of the Kuparuk R. catchment: 0.218 Tg net C LOSS (measured

1995-96 by Oechel et al. 2000) or 0.23 Tg net C GAIN (modeled 1980-2100 by
McGuire et al. 2000) in 9200 km2.

OR: Fire released as much COZ2 to the atmosphere as annual NEE of 9-10
Kuparuk River watersheds in ~10-15% of the area of one watershed

PanArctic tundra biome C sink averaged 3 - 4 Tg C/y over the last 10 years of
the 20th century (McGuire et al. 2009).



The US B-53 Nuclear

- Bomb

" Explosive yield ~9 Megatons
|1 Megaton = 4.2 x 1015 Joules
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The Anaktuvuk River

Burn

Energy released by
combustion of organic
matter

~93 x 10% Joules,
equivalent to

~22 Megatons TNT




Anaktuvuk River Fire

Area burned : 1039 km?2
C rgl_eased 1 ~2.16 Tg
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Summary of initial changes in C balance
due to climate change and fire

Yearly NEE Change in NEE in 1 year due to:

(mean predicted) Warming Combustion Recovery Aquatic loss

2007 2008 2008
-15 gC <-1gC 2.02E+3 gC 80-140g C 1-2g C
-15.6E+09 gC <-1.04E+09g C 2.16E+12gC 1.25E+11gC 1-2E+09 gC
-2.8E+12 gC <-1.88E+11g C




Although the area disturbed is relatively small,
changes in response to disturbances (fire,
thermokarst) are much greater and faster than
direct responses to climate

Changes in C cycling on disturbed sites are large
enough that the regional response to climate
change will be dominated by changes in
disturbance regime, not direct impacts of
climate change.
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June-August NEE, 2008-2012 Unburned Tundra, 4 July
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“The Valley of Thermokarsts”
active layer displacement




Panarctic Change: The Greening and the Browning

of the Arctic and Boreal regions
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How can we evaluate these changes against
a background of much greater variability in C
stocks and turnover?




Productivity, for example,
varies by 3 orders of
magnitude among arctic
ecosystems

Table 6.10. Soil organic matter, plant biomass, and net primary production (NPP) in the
main Arctic ecosystem types. After Jonasson et al. (2001) based on data from Bliss and
Matveyeva (1992) and Oechel and Billings (1992).

Soil: % of total

Soil organic  Vegetation SOIl:NPP  Veg:NPP

matter biomass Vegetation area
(g /m?) (g/m?)
Polar desert 20 2 10 20 2.0 15
Semi-desert 1030 250 4.1 29 7.1 8
wet 21000 750 28 150 5.4 2
sedge/mire
Semi-desert 9200 290 32 204 6.4 6
Low shrub 3800 770 4.9 10 2.1 23
wet 38750 959 40 176 4.3 16
sedge/mire
Tall shrub 400 2600 0.2 0.4 2.6 3
Tussock/
sedge dwarf 29000 3330 8.7 129 16 17

shrub
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Fig. 6 The modelled response surface of GPP of vascular plants (contour lines, g C m* day ') to combined variations in
LAI(L: m” leaf arca m - ground area) and total foliar N (N: g N 'm : ground area). Also shown (symbols) are the LAI-N
relationships for the sites along the transect, and the line that connects points on the surface where dP/dl = 1 48 dP/oN,
where P = GPP.
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The Model:

% 1 % ~—K*LAI
Where: P +E0 I*e

maxL
NEE is the measured or predicted net CO2-C flux (umol C per m? ground per
second)
LAl is leaf area as calculated from the measured NDVI (m? leaf/m? ground)
| is the measured incident PAR(umol photons per m? ground per second)
T is the air temperature during the measurement (°C)

R,, R, b, P K, and E, are parameters estimated by nonlinear regression

maxL?

(Shaver et al. 2007)
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Figure 5. Measured versus
modeled NEE, using all
available data from 32
site/vegetation type
combinations.

r2=0.799

slope = 1.000

intercept = 0.000

RMSE = 1.53 umol m?2 s1

Shaver et al. 2007



Model
parameterized
with data from
any Low Arctic
site or
vegetation type
predicts NEE

| accurately Iin
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Figure 4. Root Mean Square Error (RMSE, umol m2 s1) for predictions of NEE in individual sites, regions, or
vegetation types when the NEE, model parameters are developed by regression on the same data subsets
(horizontal axis) or on the whole data set (vertical axis). Points above the 1:1 line indicate larger RMSE, and
thus less accuracy, using the whole data set.

Shaver et al. 2007



Table 3. Statistics of fit () and accuracy (RMSE) for predictions of NEE based on regression parameters derived from the entire
data set, for High Arctic data only, and for the Low Arctic data only. Numbers in bold represent cells where NEE is predicted for the

same data set used for model parameterization. Numbers in plain font represent cells where parameters derived by regression using
one data set are used to predict NEE in a different data set.

Data sets predicted by regression parameters

r’, predicted vs. observed RMSE, predicted vs. observed
Data used in i ] ] i ] -
regression All Data | High Arctic | Low Arctic All Data High Arctic | Low Arctic
All Data 4853 0.759 0.703 0.769 1.512 1.258 1.585
High Arctic | 1179 0.622 0.73% 0627 2192 1.187 2431
Low Arctic | 3674 0.759 0.698 0.769 1.513 1.271 1.583




So what?

~75% of the variation in net CO, flux éNEE) for a wide range
of arctic ecosystems can be explained knowing only leaf
area, air temperature, and light (PAR)

Measurements made in one part of the Arctic can be used to
predict CO2 fluxes in other parts of the Arctic

Species/functional type composition doesn’'t seem to
matter—compos_ltlon_changes dramatically and often
abruptly along climatic gradients but NEE changes smoothly
with leaf area

Success of continuous model indicates high level of
convergence in canopy structure and function among
diverse tundras including diverse plant types

Short term changes in NEE throughout the Arctic can be
predicted with accuracy using a single parameterization of a
single model
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Imnavait Creek N Balance

Inputs (mg N/m?/yr)

Precipitation = 25 TFS candy bar pieces = 1.3
N-fixation =106 (80-131)  DEET =09

Balance
Inputs = 131
Outputs = 117

Difference = 14

Qutputs
(mg N/m?/yr)
Stream export = 63 (32-98)

Burial (accumulation)= 54

Denitrification = 1440 (0-1440) Plant N requirement
. ~ 4,000 mg N/m2/yr
(potential)
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Future: Linked trajectories of change??

RESPONSE
g
5

Year

Threshold, tipping points, local stability ~ perturbation ??



How do we get from Point A to Point B ?

SYSTEM
STATE




Links to overall project goals

e Large-area disturbance

 Are we meeting our proposal goals? YES WE
ARE
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3 | Carbon Loading
(S. River / Toolik inlet)

In larger
streams,
discharge drives

C loading ratio

H Nitrogen Loading Ioading, but when
3 Erereas discharge is equal
il the burned site
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' South River
1Tributary,

: Birthday Creek
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Sampling Sites and
Catchment areas

Small streams:
Dimple inlet = 1.4 km?

- Birthday Creek = 2.7 km?

Dimple outlet = 0.6 km?
Control:

| Imnavait Creek = 2.2 km?

Large rivers:

South River = 116 km?
Shrew River = 58 km?
Controls:
Toolik Inlet = 48 km?
Kuparuk R. = 146 km?




Dimple Lake area
variable burn intensity and area




South River basin - intensely burned areas




The Shrew River area
variable burn, less riparian damage
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Phosphate Export, 24 June - 16 August

1.5

o L0
— o

(,w/dbw) "Od




Nitrogen Export, 24 June - 16 August
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Carbon Export, 24 June - 16 August
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Land-water Interactions, or
the Divina Commedia Toolikia e
Data and Contributions from: 2 -

Angela Allen, Sarah Barbrow, Breck Bowden, Jeff Boyer, Jason Dobkowski, Amanda Field, Rob Geick,
Cody Johnson, Doug Kane, Jen Kostrzewski, Meghan Miner, Elissa Schuet, Gus Shaver, Dan White,
Lauren Yelen
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Research of the Arctic LTER: Synthesis

e Synthesis
— How we do synthesis, imp of collaborating projects

— Project synthesis
e Synthesis Book—58 coauthors
* Lakes, Streams, Terrestrial, Land-water synthesis (previous presentations)

— Ecological theory: Moore and deRuiter Ecological Energetics
— Overall project; current examples

Fire in the Arctic Landscape

Trophic structure

C, N budgets

— PanArctic:
e Canopy-level controls on NEE

— Network and multisite synthesis



Summary of initial changes in C balance

due to climate change and fire

Yearly NEE Change in NEE in 1 year due to:
(mean predicted) Warming Combustion Recovery Aquatic loss
Area 2007 2008 2008
one m2 -15gC <-1gC 2.02E+3 gC 80-140g C 1-2gC
AR Burn -15.6E+09 gC <-1.04E+09g C 2.16E+12gC  1.25E+11gC 1-2E+09gC
I Slope -2.8E+12gC  <-1.88E+11gC
— . T

Combustion losses/m2 were opposite in sign and ~100x annual NEE;

© combustion losses were >2000x expected gains due to warming alone;

" losses on AR Burn were >2/3 the yearly C gain of the entire N Slope
(200x larger area) and >10x predicted gains due to warming only

In summer 2008, increased NEE (C loss) in recovering vegetation was 5-9
x predicted gains as annual NEE and >100x changes in NEE due to
warming in equal area, and similar (but opposite in sign) to warming
gains on entire N Slope

In summer 2008, aquatic losses in burned catchments were10% of
unburned NEE and ~1-10x NEE gains due to warming
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