
Welcome everyone 
 

The Arctic LTER Project: 
Mid-term Site Review 
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• How we do synthesis, imp of collaborating projects 
• Within-site synthesis 

Synthesis Book—58 coauthors 
Lakes, Streams, Terrestrial, Land-water synthesis  (previous 
presentations) 

• Network and multisite synthesis 
• Ecological theory:  Moore and deRuiter Ecological 

Energetics 
• Overall project:  Fire in the Arctic Landscape 
• PanArctic synthesis:  Canopy-level controls on NEE 
• Current within-site synthesis projects: 
 Trophic structure 
 C, N budgets  
 

 

Research of the Arctic LTER: 
Synthesis 



Soils underlain by 
permafrost contain 
almost 1700 Pg C, 
about 50 % of all 
soil C and >2x that 
held in the 
atmosphere 



McGuire et al. 2000: 

NEP of PanArctic 
tundra varies from      
-30 to +40 g C/m2/y,  
 
NEP of Kuparuk 
watershed is currently 
~15-20 g C/m2/y 
 
Change in NEP due 
to climate change is 
<1.0 g C/m2/y 

GPP 

RE 

NEP 



Something new on the horizon 



Anaktuvuk River Burn,  
MODIS, early June 2008  

Hu et al. 2010: no fires in 
this area for past 5000 y 



 
COMBUSTION LOSSES  
VS ANNUAL NEE OF 
KUPARUK BASIN: 
 
C loss by combution was 
 ~2.16 Tg over 1039 km2 
(measured by Mack et al 2011) 
 
 
Annual NEE of the Kuparuk R. catchment: 0.218 Tg net C LOSS (measured 
1995-96 by Oechel et al. 2000) or 0.23 Tg net C GAIN (modeled 1980-2100 by 
McGuire et al. 2000) in 9200 km2.   
 
OR:  Fire released as much CO2 to the atmosphere as annual NEE of 9-10 
Kuparuk River watersheds in ~10-15% of the area of one watershed 
 
PanArctic tundra biome C sink averaged 3 - 4 Tg C/y over the last 10 years of 
the 20th century (McGuire et al. 2009). 

 



The US B-53 Nuclear 
Bomb 
Explosive yield ~9 Megatons 
1 Megaton = 4.2 x 1015 Joules 

The Anaktuvuk River 
Burn 
Energy released by 
combustion of organic 
matter  
~93 x 1015 Joules,  
equivalent to 
~22 Megatons TNT 



Anaktuvuk River Fire 
 

Severe 

Moderate 

Unburned 

Area burned : 1039 km2 
C released : ~2.16 Tg 
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Summary of initial changes in C balance 
due to climate change and fire 

Yearly NEE Change in NEE in 1 year due to:
(mean predicted) Warming Combustion Recovery Aquatic loss

Area: 2007 2008 2008
one m2 -15 gC < -1 g C 2.02E+3 gC 80-140 g C 1-2 g C 
AR Burn -15.6E+09 gC <-1.04E+09 g C 2.16E+12 gC 1.25E+11 g C 1-2E+09 gC 
N Slope -2.8E+12 gC <-1.88E+11 g C



 

Although the area disturbed is relatively small, 
changes in response to disturbances (fire, 
thermokarst) are much greater and faster than 
direct responses to climate 

Changes in C cycling on disturbed sites are large 
enough that the regional response to climate 
change will be dominated by changes in 
disturbance regime, not direct impacts of 
climate change.   
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“The Valley of Thermokarsts” 
active layer displacement 



Goetz et al 2006 

Verbyla 2008 

Panarctic Change: The Greening and the Browning 
of the Arctic and Boreal regions 



How can we evaluate these changes against 
a background of much greater variability in C 
stocks and turnover? 



Table 6.10. Soil organic matter, plant biomass, and net primary production (NPP) in the 
main Arctic ecosystem types. After Jonasson et al. (2001) based on data from Bliss and 
Matveyeva (1992) and Oechel and Billings (1992). 

  Soil organic 
matter 

Vegetation 
biomass  NPP Soil: 

Vegetation Soil:NPP Veg:NPP % of total 
area  

    (g /m2) (g /m2) (g /m2/y)     

High Arctic 

Polar desert 20 2 1 10 20 2.0 15 

Semi-desert 1030 250 35 4.1 29 7.1 8 

Wet 
sedge/mire 21000 750 140 28 150 5.4 2 

Low Arctic 

Semi-desert 9200 290 45 32 204 6.4 6 

Low shrub 3800 770 375 4.9 10 2.1 23 

Wet 
sedge/mire 38750 959 220 40 176 4.3 16 

Tall shrub 400 2600 1000 0.2 0.4 2.6 3 

Tussock/ 
sedge dwarf 
shrub 

29000 3330 225 8.7 129 16 17 

 

Productivity, for example, 
varies by 3 orders of 
magnitude among arctic 
ecosystems 



LAI-Canopy N relationship is 
constant across most 
vegetation types at Toolik Lake, 
Alaska, and Abisko, Sweden 
(van Wijk et al. 2005) 
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The Model: 
  
 
 
  
Where:  
NEE is the measured or predicted net CO2-C flux (μmol C per m2 ground per 
second)  
LAI is leaf area as calculated from the measured NDVI (m2 leaf/m2 ground) 
I is the measured incident PAR(μmol photons per m2 ground per second) 
T is the air temperature during the measurement (°C) 
 
Ro, Rx, b, PmaxL, k, and E0 are parameters estimated by nonlinear regression 
 
(Shaver et al. 2007) 
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Abisko sites
NONLIN calculated using all records
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Figure 5.  Measured versus 
modeled NEE, using all 
available data from 32 
site/vegetation type 
combinations.  
 
r2 = 0.799 
slope = 1.000 
intercept = 0.000 
RMSE = 1.53 µmol m-2 s-1 

Shaver et al. 2007 



Figure 4.  Root Mean Square Error (RMSE, µmol m-2 s-1) for predictions of NEE in individual sites, regions, or 
vegetation types when the NEE2 model parameters are developed by regression on the same data subsets 
(horizontal axis) or on the whole data set (vertical axis). Points above the 1:1 line  indicate larger RMSE, and 
thus less accuracy, using the whole data set. 
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So what? 
• ~75% of the variation in net CO2 flux (NEE) for a wide range 

of arctic ecosystems can be explained knowing only leaf 
area, air temperature, and light (PAR) 

• Measurements made in one part of the Arctic can be used to 
predict CO2 fluxes in other parts of the Arctic 

• Species/functional type composition doesn’t seem to 
matter—composition changes dramatically and often 
abruptly along climatic gradients but NEE changes smoothly 
with leaf area 

• Success of continuous model indicates high level of 
convergence in canopy structure and function among 
diverse tundras including diverse plant types 

• Short term changes in NEE throughout the Arctic can be 
predicted with accuracy using a single parameterization of a 
single model 



 









Future: Linked trajectories of change?? 

Year 

1          2         3         4          5          6         7          8         9        10 

RE
SP

O
N

SE
 

Oxygen 

Threshold, tipping points, local stability ~ perturbation ?? 



How do we get from Point A to Point B ? 



Links to overall project goals 

• Large-area disturbance 
• Are we meeting our proposal goals?   YES WE 

ARE 
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Sampling Sites and 
Catchment areas 

Small streams: 
 

Dimple inlet   = 1.4 km2 

Birthday Creek = 2.7 km2 
Dimple outlet  = 0.6 km2  
 Control: 
Imnavait Creek = 2.2 km2 

Large rivers: 
 

South River = 116 km2 
Shrew River = 58 km2 

 Controls: 
Toolik Inlet = 48 km2 

Kuparuk R.  = 146 km2 



Dimple Lake area 
 variable burn intensity and area 

Birthday 
Creek Dimple 

inlet 

Dimple 
outlet 



South River basin - intensely burned areas 



The Shrew River area 
variable burn, less riparian damage 
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NO3 is generally 
lower at the 
burn sites 



DOC is higher at 
the Burn sites. 

 
CO2 and CH4 are 

related to 
stream size and 
lake influence 

 
HCO3 is related 

to bedrock 
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Fire, Flood, Landslide, and Plague 

Data and Contributions from: 
Angela Allen, Sarah Barbrow, Breck Bowden, Jeff Boyer, Jason Dobkowski, Amanda Field, Rob Geick, 
Cody Johnson, Doug Kane, Jen Kostrzewski, Meghan Miner, Elissa Schuet, Gus Shaver, Dan White, 
Lauren Yelen 

Land-water Interactions, or    
the Divina Commedia Toolikia 

http://en.wikipedia.org/wiki/File:Gustave_Dor%C3%A9_-_Dante_Alighieri_-_Inferno_-_Plate_22_(Canto_VII_-_Hoarders_and_Wasters).jpg
http://en.wikipedia.org/wiki/File:Michelino_DanteAndHisPoem.jpg
http://en.wikipedia.org/wiki/File:Gustave_Dore_Inferno32.jpg
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Research of the Arctic LTER: Synthesis 

• Synthesis 
– How we do synthesis, imp of collaborating projects 
– Project synthesis 

• Synthesis Book—58 coauthors 
• Lakes, Streams, Terrestrial, Land-water synthesis  (previous presentations) 

– Ecological theory:  Moore and deRuiter Ecological Energetics 
– Overall project; current examples 
 Fire in the Arctic Landscape 
 Trophic structure 
 C, N budgets  
– PanArctic:   

• Canopy-level controls on NEE 
– Network and multisite synthesis 
  

 



Summary of initial changes in C balance 
due to climate change and fire 

Yearly NEE Change in NEE in 1 year due to:
(mean predicted) Warming Combustion Recovery Aquatic loss

Area: 2007 2008 2008
one m2 -15 gC < -1 g C 2.02E+3 gC 80-140 g C 1-2 g C 
AR Burn -15.6E+09 gC <-1.04E+09 g C 2.16E+12 gC 1.25E+11 g C 1-2E+09 gC 
N Slope -2.8E+12 gC <-1.88E+11 g C

Combustion losses/m2 were opposite in sign and ~100x annual NEE; 
combustion losses were >2000x expected gains due to warming alone; 
losses on AR Burn were >2/3 the yearly C gain of the entire N Slope 
(200x larger area) and >10x predicted gains due to warming only 

In summer 2008, increased NEE (C loss) in recovering vegetation was 5-9 
x predicted gains as annual NEE and >100x changes in NEE due to 
warming in equal area, and similar (but opposite in sign) to warming 
gains on entire N Slope 

In  summer 2008, aquatic losses in burned catchments were10% of 
unburned NEE and ~1-10x NEE gains due to warming  
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