specific conductivity

Stream networks are intimately connected to the landscapes through which they flow and significantly transform nutrients and organic matter that are in transport from landscapes to oceans. This work will quantify the relative influences of throughflow, lateral inputs, and hyporheic (a layer of surface sediments that contains water which exchanges continuously with water in the open channel) regeneration on the seasonal fluxes of C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. This objective is a logical extension of earlier. This work will focus on seasonal dynamics at different river reach scales (1st to 4th order streams) and will lay the groundwork for a whole river network model to integrate the influences of throughflow, lateral inputs, hyporheic regeneration, and in-stream metabolism on C, N, and P fluxes through an entire river network.

For more information see project's web site:  Changing Seasonality and Arctic Stream Networks

Changing Seasonality and Arctic Stream Networks
Abstract
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/b4a534851f549a690ef2aff85de08d9f
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2010 season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/5799d44b175ed4731ab2f95517b5e00c
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2011 season.
Michael Gooseff, 2013 Specific conductance and temperature data from Peat Inlet near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/cbe4b564a3fa2e6108a5f5b65c2f1950
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from Peat Inlet stream, 2011 season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/7718058cc9f7419cc1b84a0a3d3b9421
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2010 season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Outlet near Toolik Field Station, Alaska, summer 2012. 10.6073/pasta/0d632902d48b411c7f9c92a5231b50fd
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Outlet stream, 2012 season.
Michael Gooseff, 2013 Specific conductance and temperature data from Peat Inlet near Toolik Field Station, Alaska, summer 2010. 10.6073/pasta/2fa324c9b2656bae95f9a7aea25b8e25
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from Peat Inlet stream, 2010 season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2011. 10.6073/pasta/bcf66401d57ed736fd610682f49460fb
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2011 season.
Michael Gooseff, 2013 Specific conductance and temperature data from I8 Inlet, near Toolik Field Station, Alaska, summer 2012. 10.6073/pasta/60754311f473af4d3540a0fa3d70d724
As a part of the CSASN project, background (or ambient) specific conductance and stream water temperature was continuously monitored in three streams within the Toolik Inlet watershed from 2010 - 2012 summer/fall seasons. HOBO U24 data loggers were used for data acquisition. The data included in this file is from I8 Inlet stream, 2012 season.
Lakes Physical and Chemical Parameters
Abstract
Anne Giblin, George Kling, 2022 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1975 to 1989.. 10.6073/pasta/588e78d0d92ee947349eda23402543f6
Decadal file describing the physical lake parameters recorded at various lakes near Toolik Research Station during summers from 1975 to 1989. Depth profiles at the sites of physical measures were collected in situ. Values measured included temperature, conductivity, pH, dissolved oxygen, Chlorophyll A, Secchi disk depth and PAR. Note that some sample depths also have additional parameters measured and available in separate files for water chemistry and primary production.
Anne Giblin, Christopher Luecke, George Kling, 2010 Average Epilimnetic Conductivity from 1992 to present in Tooli Lake, Arctic LTER, Alaska.. 10.6073/pasta/f0b996fef22d56cacd87f60f5dea2cd9
Average conductivity of the epilimnion (0-3m of water depth) found in Toolik Lake during the month of July.
Anne Giblin, George Kling, 2001 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009. 10.6073/pasta/791e3cb6288f75f602f23ef3e5532017
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 2000 to 2009. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Anne Giblin, George Kling, 1991 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999. 10.6073/pasta/1fd85582de93a281e5e5d3b80df97b52
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 1990 to 1999. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Anne Giblin, George Kling, 2021 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2021. 10.6073/pasta/76ae1339a928d85193eb15bbe88cee75
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
CSV
Subscribe to specific conductivity