arctic

Lakes Chlorophyll and Primary Production
Abstract
Anne Giblin, George Kling, 1995 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.. 10.6073/pasta/26bc0b31099bafcdf964dd47b0d654ec
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1983 to 1989. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Anne Giblin, George Kling, 2022 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Alaska, Arctic LTER. Summer 2010 to 2020. 10.6073/pasta/1981b68e5b34e2a87436cdf76e40b417
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2010 to 2020. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Anne Giblin, George Kling, 1992 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999.. 10.6073/pasta/1b1538449340e68760cf86d92d7082de
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Anne Giblin, George Kling, 1992 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009.. 10.6073/pasta/c14fe6e5bb0e2a2c6a74d51a6943c667
Decadal file describing the chlorophyll a and primary production in  various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009.  Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production.  The amount of chlorophyll a and pheophytin were also measured.
Photochemistry Chemistry
Abstract
George Kling, Rose Cory, 2014 Apparent quantum yield data set for NSF Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/aa2d0ed4ddef6e76c3ef8d6c12460607
Data file describing the apparent quantum yield of photo-oxidation, photo-mineralization, and photo-stimulated microbial respiration of dissolved organic carbon in water samples collected at various sites near Toolik Lake on the North Slope of Alaska. A synthesis of the data presented here is published in Cory et al. 2013, PNAS 110:3429-3434, and in Cory et al. 2014, Science 345:925-928.
George Kling, Rose Cory, 2014 Light profile data set for NSF Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/8e8cb22fd7ee278168f8eb6ad7e1a48c
Data file containing the irradiance profile with depth in two rivers on the North Slope of Alaska near Toolik Lake . Variables include site, depth, and wavelength. A synthesis of the data presented here is published in Cory et al. 2013, PNAS 110:3429-3434, and in Cory et al. 2014, Science 345:925-928.
George Kling, Rose Cory, 2014 Photochemistry data set for NSF Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/2f9433d6a608e82e1dd4fa23175c1f59
Data file containing optical characterization of colored dissolved organic matter (CDOM). Data include CDOM absorption coefficients, water column light attenuation coefficients, specific UV light absorbance (SUVA254), spectral slope ratio, and fluorescence index from waters near Toolik Lake on the North Slope of Alaska. A synthesis of the data presented here is published in Cory et al. 2013, PNAS 110:3429-3434, and in Cory et al. 2014, Science 345:925-928.
Thermokarst MEL
Abstract
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation F - increased N deposition. 10.6073/pasta/04a2ff938b67d9d1dd4e648d370856b6
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to N fertilization.. 10.6073/pasta/a1464ee098b4693f2aea4078b3e5a35c
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra control simulation. 10.6073/pasta/46323340d5b33913e9399e750cb3600b
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to NP fertilization.. 10.6073/pasta/f7bb757427c523e546489a2f4cf957d4
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation E - reduced Phase I soil organic matter. 10.6073/pasta/5534808e2359f56db12593fde6bb42d0
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event under control conditions.. 10.6073/pasta/8adc3b89c8c73fe1870ad82536575f99
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation A - increased Phase II soil organic matter. 10.6073/pasta/83564c3cce28be248d93b384d58ffda1
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to P fertilization.. 10.6073/pasta/7d253bd599910b0a6497c83d74369f32
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation I - doubled Phase I decomposition. 10.6073/pasta/3171b861f8c2009bdd2d1acdf5738179
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation J - doubled Phase II decomposition. 10.6073/pasta/56b00b38bd5dd8c1dc2b1b8b0b1255a8
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation H - increased N and P deposition. 10.6073/pasta/4f6210c24640c0070a871ca95cd53b9f
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra shade house simulation. 10.6073/pasta/8cf3a98c0e86a5b7e17fe9b3ada34199
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra phosphorus fertilization simulation. 10.6073/pasta/055aebf21d403577c188049995c75ca6
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation B - increased Phase I soil organic matter. 10.6073/pasta/e75ab68cb99fd5094c4ebcb660986e61
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra fertilized greenhouse simulation. 10.6073/pasta/e25f1d4053e23f89a1c0e5e93c967553
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event. 10.6073/pasta/ba85d7312407e90a46fac604467f3ac7
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra nitrogen and phosphorus fertilization simulation. 10.6073/pasta/fa66c6160400843ee8936df23b91881c
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation D - reduced Phase I and Phase II soil organic matter. 10.6073/pasta/9f471a11c32968f2aebcc27d292a3694
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra nitrogen fertilized simulation. 10.6073/pasta/be12688c444a9546f2d5fae9182f78f1
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event: saturating nutrients.. 10.6073/pasta/07cba61c48ce8b31830daac1986d1c21
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation C - increased Phase I and Phase II soil organic matter. 10.6073/pasta/b3eb66158a1b1d77148ff63d145e8d90
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation G - increased P deposition. 10.6073/pasta/22cdf3a3353448cb0f819b5121a5c014
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra greenhouse simulation. 10.6073/pasta/97587f197c22b52ab9e637ffca4fceeb
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Undisturbed tussock tundra. 10.6073/pasta/f83d33ff75b3ab2c690564d7c597b364
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Terrestrial Invertebrates
Abstract
Amanda Koltz, 2018 Effects of experimentally altered wolf spider densities and warming on soil microarthropods, litter decomposition, litter N, and soil nutrients near Toolik Field Station, AK in summer 2012 . 10.6073/pasta/d1fb3658f397c837b1ac49c42c2bdff7
Predators can disproportionately impact the structure and function of ecosystems relative to their biomass. These effects may be exacerbated under warming in ecosystems like the Arctic, where the number and diversity of predators are low and small shifts in community interactions can alter carbon cycle feedbacks. Here we show that warming alters the effects of wolf spiders, a dominant tundra predator, on belowground litter decomposition and nutrient dynamics.
AON Stream Chemistry
Abstract
George Kling, 2019 Biogeochemistry data set for Imnavait Creek Weir on the North Slope of Alaska 2002-2018. 10.6073/pasta/733c73c6ebffeaec6970b2b0f4dddfe6
Data file containing biogeochemical data of water samples collected in Imnavait Creek, North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream), and elevation. Values of variables measured in the field include temperature, conductivity, pH. Chemical analysis for samples include alkalinity, dissolved organic carbon, inorganic and total dissolved nutrients particulate carbon, nitrogen, and phosphorus, cations and anions.
Lakes Physical and Chemical Parameters
Abstract
Anne Giblin, George Kling, 2022 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1975 to 1989.. 10.6073/pasta/588e78d0d92ee947349eda23402543f6
Decadal file describing the physical lake parameters recorded at various lakes near Toolik Research Station during summers from 1975 to 1989. Depth profiles at the sites of physical measures were collected in situ. Values measured included temperature, conductivity, pH, dissolved oxygen, Chlorophyll A, Secchi disk depth and PAR. Note that some sample depths also have additional parameters measured and available in separate files for water chemistry and primary production.
Anne Giblin, Christopher Luecke, George Kling, 2010 Average Epilimnetic Conductivity from 1992 to present in Tooli Lake, Arctic LTER, Alaska.. 10.6073/pasta/f0b996fef22d56cacd87f60f5dea2cd9
Average conductivity of the epilimnion (0-3m of water depth) found in Toolik Lake during the month of July.
Anne Giblin, George Kling, 2001 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009. 10.6073/pasta/791e3cb6288f75f602f23ef3e5532017
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 2000 to 2009. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Anne Giblin, George Kling, 1991 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999. 10.6073/pasta/1fd85582de93a281e5e5d3b80df97b52
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 1990 to 1999. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Anne Giblin, George Kling, 2021 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2021. 10.6073/pasta/76ae1339a928d85193eb15bbe88cee75
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Terrestrial Soil Properties
Abstract
John Moore, 2013 Extracellular enzyme activities in soils from Arctic LTER moist acidic tundra nutrient addition plots, Toolik Field Station, Alaska, sampled July 2011.. 10.6073/pasta/ea03e558865471f1daf5b15bbce582c2
Soil samples were collected from control, and N+P plots from within a set of treatments in Arctic LTER Moist Acidic Tundra plots established in 1989 and in 2006 . At the time of sampling the soil was separated into organic horizon, organic/mineral interface, and the upper 5cm of the mineral soil. In the lab the potential activities of seven hydrolytic enzymes was determined using fluorometric techniques (Saiya-Cork et al. 2002) modified following Steinweg et al(.2012).
Julia Reiskind, Michelle Mack, Jennie DeMarco, 2014 Carbon/Nitrogen Status Including Protease Activities of Arctic Soils Associated with Shrubs of Varying Height around Toolik Field Station, Alaska 2009.. 10.6073/pasta/71cc8c540aad45c1d774b35fdcf80ac0
Organic and mineral soil cores were collected from 18 transects differentiated by shrub height into three replica groups: high (average 64 cm ± SE 1.01); medium (39 ± SE 1); and low (18 ± SE 0.4); and percent plant functional group cover. Replica sample cores were taken from each transect, and after homogenization and K2SO4 extraction, if required, samples were analyzed for % C (carbon) and N (nitrogen); non-purgeable organic C (NPOC); total N (TN); dissolved inorganic and organic N (DIN, DON); microbial biomass C (MB-C) and N (MB-N).
Julia Reiskind, Michelle Mack, Martin Lavoie, 2012 Proteolytic enzyme activity of organic and mineral soil core samples collected near Toolik Lake field station, Alaska, July 2001. 10.6073/pasta/8f9ed5ff1f556c725eb666cce128e859
The original focus of this study was an analysis of proteolytic enzyme activity of Alaskan arctic tundra soils, however initial results raised questions regarding the method (Watanabe and Hayano, 1995). Thus, the goals of the study changed to 1) an investigation of the method, and 2) a comparison of enzyme activities of two different soil layers from the arctic tundra.
Gaius Shaver, 1993 Extractable NH4-N and NO3-N (2 N KCl), PO4-P (0.025 N HCl) and pH (0.01 M CaCl2) were measured on soils from a transect along the Dalton road, Arctic LTER 1991.. 10.6073/pasta/d2fc50cac67c6ae3659500e1baa2d3a9
Extractable NH4-N and NO3-N (2 N KCl), PO4-P

(0.025 N HCl) and pH (0.01 M CaCl2) were measured on soils from a

transect along the Dalton road. Sites are Gus Shaver flowering sites and

Arctic LTER sites.
Photochemistry
Abstract
George Kling, Rose Cory, 2014 Biogeochemistry data set for NSF Arctic Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/22a3a3fc2dc74b7aabe8a10ab9061cf0
Data file describing the biogeochemistry of samples collected at various sites near Toolik Lake on the North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, and category (level of thermokarst disturbance). Physical measures collected in the field include temperature, electrical conductivity, and pH.
CSV
Subscribe to arctic