sodium chloride

Stream networks are intimately connected to the landscapes through which they flow and significantly transform nutrients and organic matter that are in transport from landscapes to oceans. This work will quantify the relative influences of throughflow, lateral inputs, and hyporheic (a layer of surface sediments that contains water which exchanges continuously with water in the open channel) regeneration on the seasonal fluxes of C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. This objective is a logical extension of earlier. This work will focus on seasonal dynamics at different river reach scales (1st to 4th order streams) and will lay the groundwork for a whole river network model to integrate the influences of throughflow, lateral inputs, hyporheic regeneration, and in-stream metabolism on C, N, and P fluxes through an entire river network.

For more information see project's web site:  Changing Seasonality and Arctic Stream Networks

Changing Seasonality and Arctic Stream Networks
Abstract
William "Breck" Bowden, 2013 CSASN TASCC Nutrient additions to streams near Toolik Field Sation, Alaska 2010 to 2012. 10.6073/pasta/a4716dc93844548b60384a899a23e794
The Changing Seasonality of Artic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of throughflow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location.
William "Breck" Bowden, 2013 Nutrient and tracer amounts for Tracer Additions for Spiraling Curve Characterization studies on arctic streams near Toolik Field Station, Alaska 2010 -2012.. 10.6073/pasta/6b0e4feffc9bf3cc093dd668496d5d1b
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of tracer addition for spiraling curve characterization (TASCC) and Plateau nutrient additions at each sampling location.
CSV
Subscribe to sodium chloride