Bibliography
“Sediment Respiration Drives Circulation And Production Of Co 2 In Ice-Covered Alaskan Arctic Lakes”. Limnology And Oceanography Letters. Limnology And Oceanography Letters (2018). doi:10.1002/lol2.10083.
. “Sediment Respiration Drives Circulation And Production Of Co $_\Textrm2$ In Ice-Covered Alaskan Arctic Lakes”. Limnology And Oceanography Letters. Limnology And Oceanography Letters (2018). doi:10.1002/lol2.10083.
. “Shrub Shading Moderates The Effects Of Weather On Arthropod Activity In Arctic Tundra”. Ecological Entomology 43, no. 5. Ecological Entomology (2018): 647 - 655. doi:10.1111/een.12644.
. “Solar-Induced Chlorophyll Fluorescence Is Strongly Correlated With Terrestrial Photosynthesis For A Wide Variety Of Biomes: First Global Analysis Based On Oco-2 And Flux Tower Observations”. Global Change Biology 24, no. 93. Global Change Biology (2018): 3990 - 4008. doi:10.1111/gcb.14297.
. “Spring Photosynthetic Onset And Net Co 2 Uptake In Alaska Triggered By Landscape Thawing”. Global Change Biology 24. Global Change Biology (2018): 3416 - 3435. doi:10.1111/gcb.14283.
. “Spring Photosynthetic Onset And Net Co $_\Textrm2$ Uptake In Alaska Triggered By Landscape Thawing”. Global Change Biology 24. Global Change Biology (2018): 3416–3435. doi:10.1111/gcb.14283.
. “A Test Of Functional Convergence In Carbon Fluxes From Coupled C And N Cycles In Arctic Tundra”. Ecological Modelling 383. Ecological Modelling (2018): 31 - 40. doi:10.1016/j.ecolmodel.2018.05.017.
. “Tracking The Fate Of Fresh Carbon In The Arctic Tundra: Will Shrub Expansion Alter Responses Of Soil Organic Matter To Warming?”. Soil Biology And Biochemistry 120. Soil Biology And Biochemistry (2018): 134 - 144. doi:10.1016/j.soilbio.2018.02.002.
. “Tundra Avian Community Composition During Recovery From The Anaktuvuk River Fire”. International Journal Of Wildland Fire 27. International Journal Of Wildland Fire (2018): 69. doi:10.1071/wf17159.
. “Turbulence In A Small Arctic Pond”. Limnology And Oceanography 63. Limnology And Oceanography (2018): 2337–2358. doi:10.1002/lno.10941.
. “Unexpected Spatial Stability Of Water Chemistry In Headwater Stream Networks”. Ecology Letters 21. Ecology Letters (2018): 296–308. doi:10.1111/ele.12897.
. “Uniform Shrub Growth Response To June Temperature Across The North Slope Of Alaska”. Environmental Research Letters 13, no. 4. Environmental Research Letters (2018): 044013. doi:10.1088/1748-9326/aab326.
. “Warming Reverses Top-Down Effects Of Predators On Belowground Ecosystem Function In Arctic Tundra”. Proceedings Of The National Academy Of Sciences. Proceedings Of The National Academy Of Sciences (2018): 201808754. doi:10.1073/pnas.1808754115.
. “Weathering The Storm: Do Arctic Blizzards Cause Repeatable Changes In Stress Physiology And Body Condition In Breeding Songbirds?”. General And Comparative Endocrinology 267. General And Comparative Endocrinology (2018): 183 - 192. doi:10.1016/j.ygcen.2018.07.004.
. “Widespread Occurrence Of Distinct Alkenones From Group I Haptophytes In Freshwater Lakes: Implications For Paleotemperature And Paleoenvironmental Reconstructions”. Earth And Planetary Science Letters 492. Earth And Planetary Science Letters (2018): 239 - 250. doi:10.1016/j.epsl.2018.04.002.
. “Active Layer Groundwater Flow: The Interrelated Effects Of Stratigraphy, Thaw, And Topography”. Water Resources Research 55. Water Resources Research (2019): 6555–6576. doi:10.1029/2018WR024636.
. “Belowground Community Responses To Fire: Meta-Analysis Reveals Contrasting Responses Of Soil Microorganisms And Mesofauna”. Oikos 128. Oikos (2019): 309–327. doi:10.1111/oik.05738.
. “The Controls Of Iron And Oxygen On Hydroxyl Radical (•Oh) Production In Soils”. Soil Systems 3, no. 1. Soil Systems (2019): 1. doi:10.3390/soilsystems3010001.
. “Decoupled Above‐ And Belowground Responses To Multi‐Decadal Nitrogen And Phosphorus Amendments In Two Tundra Ecosystems”. Ecosphere 10, no. 7. Ecosphere (2019). doi:10.1002/ecs2.2735.
. “Differential Responses Of Ecotypes To Climate In A Ubiquitous Arctic Sedge: Implications For Future Ecosystem C Cycling”. New Phytologist. New Phytologist (2019). doi:10.1111/nph.15790.
. “Dissolved Organic Matter Chemistry And Transport Along An Arctic Tundra Hillslope”. Global Biogeochemical Cycles 33. Global Biogeochemical Cycles (2019): 47-62. doi:10.1029/2018GB006030.
. “Disturbance, Nutrients, And Antecedent Flow Conditions Affect Macroinvertebrate Community Structure And Productivity In An Arctic River”. Limnology And Oceanography 64, no. S1. Limnology And Oceanography (2019): S93-S104. doi:10.1002/lno.10942.
. “Effects Of Vertical Hydrodynamic Mixing On Photomineralization Of Dissolved Organic Carbon In Arctic Surface Waters”. Environmental Science: Processes & Impacts 21, no. 4. Environmental Science: Processes & Impacts (2019): 748 - 760. doi:10.1039/C8EM00455B.
. “The Expanding Footprint Of Rapid Arctic Change”. Earth's Future 7. Earth's Future (2019): 212–218. doi:10.1029/2018ef001088.
. “Extracellular Electron Transfer May Be An Overlooked Contribution To Pelagic Respiration In Humic-Rich Freshwater Lakes”. American Society For Microbiology 4. American Society For Microbiology (2019): e00436–18. doi:10.1128/mSphere.00436-18.
.