Bibliography
Export 1220 results:
Filters: Filter is [Clear All Filters]
“Ecotypic Differentiation In Photosynthesis And Growth Of Eriophorum Vaginatum Along A Latitudinal Gradient In The Arctic Tundra”. Botany 92, no. 8. Botany (2014): 551-561. doi:10.1139/cjb-2013-0320.
. “Ecotypic Differentiation In Photosynthesis And Growth Of \Textit{Eriophorum Vaginatum Along A Latitudinal Gradient In The Arctic Tundra”. Botany 92. Botany (2014): 551–561. doi:10.1139/cjb-2013-0320.
. “Spatial Variation Among Lakes Within Landscapes: Ecological Organization Along Lake Chains”. Ecosystems 2, no. 5. Ecosystems (1999): 395-410. doi:10.1007/s100219900089.
. “Spatial Variation Among Lakes Within Landscapes: Ecological Organization Along Lake Chains.”. Ecosystems 2. Ecosystems (1999): 395–410. doi:10.1007/s100219900089.
. “Role Of Zooplankton Grazers In Determining Composition And Productivity Of Seston In Arctic Lakes And Ponds”. University of Cincinnati, 1979.
. “Global Environmental Change And The Nature Of Aboveground Net Primary Productivity Responses: Insights From Long-Term Experiments”. Oecologia 177, no. 4. Oecologia (2015): 935-947. doi:10.1007/s00442-015-3230-9.
. “Simulating Heat Transport Of Harmonic Temperature Signals In The Earth’s Shallow Subsurface: Lower-Boundary Sensitivities”. Geophysical Research Letters 33. Geophysical Research Letters (2006): L14402. doi:10.1029/2006GL026816.
. “Simulating Heat Transport Of Harmonic Temperature Signals In The Earth's Shallow Subsurface: Lower-Boundary Sensitivities”. Geophysical Research Letters 33, no. 14. Geophysical Research Letters (2006): L14402. doi:10.1029/2006GL026816.
. “A Coupled Geochemical And Biogeochemical Approach To Characterize Bio-Reactivity Of Dissolved Organic Matter From A Headwater Stream”. Journal Of Geophysical Research: Biogeosciences 119, no. 8. Journal Of Geophysical Research: Biogeosciences (2014): 1520-1537. doi:10.1002/2013jg002600.
. “A Coupled Geochemical And Biogeochemical Approach To Characterize The Bioreactivity Of Dissolved Organic Matter From A Headwater Stream: Biogeochemistry & Lability Of Stream Dom”. Journal Of Geophysical Research: Biogeosciences 119. Journal Of Geophysical Research: Biogeosciences (2014): 1520–1537. doi:10.1002/2013jg002600.
. “Long-Term Response Of The Kuparuk River Ecosystem To Phosphorus Fertilization”. Ecology 85, no. 4. Ecology (2004): 939-954. doi:10.1890/02-4039.
. “Toxic Effects Of Prudhoe Bay Crude Oil On Arctic Freshwater Zooplankton”. University of Kansas, 1980.
. “Seasonal Patterns Of Microbial Extracellular Enzyme Activities In An Arctic Tundra Soil: Identifying Direct And Indirect Effects Of Long-Term Summer Warming”. Soil Biology And Biochemistry 66. Soil Biology And Biochemistry (2013): 119–129. doi:10.1016/j.soilbio.2013.07.003.
. “Long-Term Warming Restructures Arctic Tundra Without Changing Net Soil Carbon Storage”. Nature 497. Nature (2013): 615-618. doi:10.1038/nature12129.
. “Responses Of A Tundra System To Warming Using Scamps: A Stoichiometrically Coupled, Acclimating Microbe-Plant-Soil Model”. Ecological Monographs 84. Ecological Monographs (2014): 151-170. doi:10.1890/12-2119.1.
. “Responses Of A Tundra System To Warming Using Scamps: A Stoichiometrically Coupled, Acclimating Microbe–Plant–Soil Model”. Ecological Monographs 84. Ecological Monographs (2014): 151–170. doi:10.1890/12-2119.1.
. “Soil Organic Matter And Aggregate Dynamics In An Arctic Ecosystem”. Ecology Department. Ecology Department. Colorado State University, 2010.
. “Mycorrhizal Networks: Mechanisms, Ecology And Modelling”. Fungal Biology Reviews 26, no. 1. Fungal Biology Reviews (2012): 39-60. doi:10.1016/j.fbr.2012.01.001.
. “Unexpectedly High Among-Habitat Spider (Araneae) Faunal Diversity From The Arctic Long-Term Experimental Research (Lter) Field Station At Toolik Lake, Alaska, United States Of America”. The Canadian Entomologist 145, no. Special Issue 02. The Canadian Entomologist (2013): 219-226. doi:10.4039/tce.2013.5.
. “Benthos As The Basis For Arctic Lake Food Webs”. Aquatic Ecology 37, no. 4. Aquatic Ecology (2003): 437-445. doi:10.1023/B:AECO.0000007042.09767.dd.
. “Reimagine Fire Science For The Anthropocene”. Pnas Nexus 1. Pnas Nexus (2022): pgac115. doi:10.1093/pnasnexus/pgac115.
. “Reimagine Fire Science For The Anthropoceneabstract”. Pnas Nexus 1, no. 3. Pnas Nexus (2022). doi:10.1093/pnasnexus/pgac115.
. “We Cannot Shrug Off The Shoulder Seasons: Addressing Knowledge And Data Gaps In An Arctic Headwater”. Environmental Research Letters 15. Environmental Research Letters (2020): 104027. doi:10.1088/1748-9326/ab9d3c.
. “Revealing Biogeochemical Signatures Of Arctic Landscapes With River Chemistry”. Scientific Reports 9, no. 1. Scientific Reports (2019). doi:10.1038/s41598-019-49296-6.
. “Arctic Concentration–Discharge Relationships For Dissolved Organic Carbon And Nitrate Vary With Landscape And Season”. Limnology And Oceanography. Limnology And Oceanography (2020). doi:10.1002/lno.11682.
.