Bibliography
“Understanding The Effects Of Climate Change Via Disturbance On Pristine Arctic Lakes—Multitrophic Level Response And Recovery To A 12‐Yr, Low‐Level Fertilization Experiment”. Limnology And Oceanography. Limnology And Oceanography (2021): lno.11893. doi:10.1002/lno.11893.
. “Rainfall Alters Permafrost Soil Redox Conditions, But Meta-Omics Show Divergent Microbial Community Responses By Tundra Type In The Arctic”. Soil Systems 5. Soil Systems (2021): 17. doi:10.3390/soilsystems5010017.
. “Photochemical Alteration Of Organic Carbon Draining Permafrost Soils Shifts Microbial Metabolic Pathways And Stimulates Respiration”. Nature Communications 8. Nature Communications (2017): 772. doi:10.1038/s41467-017-00759-2.
. “Multiple Thermo-Erosional Episodes During The Past Six Millennia: Implications For The Response Of Arctic Permafrost To Climate Change”. Geology 44. Geology (2016): 439–442. doi:10.1130/g37693.1.
. “A Lake’s Life Is Not Its Own”. Nature 408. Nature (2000): 149–150. doi:10.1038/35041659.
. “Interannual, Summer, And Diel Variability Of Ch $_\Textrm4$ And Co $_\Textrm2$ Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environmental Science: Processes & Impacts. Environmental Science: Processes & Impacts (2020): 10.1039.D0EM00125B. doi:10.1039/d0em00125b.
. “Genomic Evidence That Microbial Carbon Degradation Is Dominated By Iron Redox Metabolism In Thawing Permafrost”. Isme Communications 3. Isme Communications (2023): 1–11. doi:10.1038/s43705-023-00326-5.
. “A Framework For Prioritization, Design And Coordination Of Arctic Long-Term Observing Networks: A Perspective From The U.s. Search Program”. Arctic 68. Arctic (2016): 76. doi:10.14430/arctic4450.
. “Ecosystem Recovery From Disturbance Is Constrained By N Cycle Openness, Vegetation-Soil N Distribution, Form Of N Losses, And The Balance Between Vegetation And Soil-Microbial Processes”. Ecosystems 24. Ecosystems (2021): 667–685. doi:10.1007/s10021-020-00542-3.
. “Ecosystem Feedbacks Constrain The Effect Of Day-To-Day Weather Variability On Land–Atmosphere Carbon Exchange”. Global Change Biology 29. Global Change Biology (2023): 6093–6105. doi:10.1111/gcb.16926.
. “Climate-Related Variations In Mixing Dynamics In An Alaskan Arctic Lake”. Limnology And Oceanography 54. Limnology And Oceanography (2009): 2401–2417. doi:10.4319/lo.2009.54.6_part_2.2401.
. “Benthic Community Metabolism In Deep And Shallow Arctic Lakes During 13 Years Of Whole-Lake Fertilization: Nutrient Effects On Arctic Lake Benthos”. Limnology And Oceanography 60. Limnology And Oceanography (2015): 1604–1618. doi:10.1002/lno.10120.
. “Active Layer Groundwater Flow: The Interrelated Effects Of Stratigraphy, Thaw, And Topography”. Water Resources Research 55. Water Resources Research (2019): 6555–6576. doi:10.1029/2018WR024636.
. “Establishing Relationships Between Organic Carbon Storage, Soil Water Content, And Vegetation Cover With Freeze-Thaw Deformation In The Arctic”. In Igarss 2023 - 2023 Ieee International Geoscience And Remote Sensing Symposium, 87–89. Igarss 2023 - 2023 Ieee International Geoscience And Remote Sensing Symposium, 2023. doi:10.1109/IGARSS52108.2023.10282817.
. Alaska’s Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. Long-Term Ecological Research Network Series. Long-Term Ecological Research Network Series. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.001.0001.
.