Bibliography
“Ecosystem Carbon Storage In Arctic Tundra Reduced By Long-Term Nutrient Fertilization”. Nature 431. Nature (2004): 440-443. doi:10.1038/nature02887.
. “Nutrient Addition Prompts Rapid Destabilization Of Organic Matter In An Arctic Tundra Ecosystem”. Ecosystems 11. Ecosystems (2008): 16-25. doi:10.1007/s10021-007-9104-1.
. “Plant Functional Types Do Not Predict Biomass Responses To Removal And Fertilization In Alaskan Tussock Tundra”. Journal Of Ecology 96, no. 4. Journal Of Ecology (2008): 713-726. doi:10.1111/j.1365-2745.2008.01378.x.
. “Carbon Loss From An Unprecedented Arctic Tundra Wildfire”. Nature 475, no. 7357. Nature (2011): 489-92. doi:10.1038/nature10283.
. “The Effects Of Snow, Soil Microenvironment, And Soil Organic Matter Quality On N Availability In Three Alaskan Arctic Plant Communities”. Ecosystems 14, no. 5. Ecosystems (2011): 804-817. doi:10.1007/s10021-011-9447-5.
. “ Plant Soil Feedbacks With Changing Vegetation Structure And Composition In A Warming Arctic”. Botany. Botany. University of Florida, 2011.
. “The Footprint Of Alaskan Tundra Fires During The Past Half-Century: Implications For Surface Properties And Radiative Forcing”. Environmental Research Letters 7, no. 4. Environmental Research Letters (2012): 044039. doi:10.1088/1748-9326/7/4/044039.
. “An Integrated Assessment Of The Influences Of Upland Thermal-Erosional Features On Landscape Structure And Function In The Foothills Of The Brooks Range, Alaska”. Proceedings Of The Tenth International Conference On Permafrost. Proceedings Of The Tenth International Conference On Permafrost. Salekhard, Yamal-Nenets Autonomous District, Russia, 2012.
. “The Response Of Arctic Vegetation And Soils Following The Anaktuvuk River Fire Of 2007”. Proceedings Of The Royal Society B: Biological Sciences 368. Proceedings Of The Royal Society B: Biological Sciences (2013): 1624. doi:10.1098/rstb.2012.0490.
. “Effects Of Arctic Shrub Expansion On Biophysical Vs. Biogeochemical Drivers Of Litter Decomposition”. Ecology 95, no. 7. Ecology (2014): 1861-1875. doi:10.1890/13-2221.1.
. “Effects Of Thermo-Erosional Disturbance On Surface Soil Carbon And Nitrogen Dynamics In Upland Arctic Tundra”. Environmental Research Letters 9, no. 7. Environmental Research Letters (2014): 075006. doi:10.1088/1748-9326/9/7/075006.
. “Long-Term Experimental Warming And Nutrient Additions Increase Productivity In Tall Deciduous Shrub Tundra”. Ecosphere 6, no. 5. Ecosphere (2014): Article 72. doi:10.1890/es13-00281.1.
. “Reconstructing Disturbances And Their Biogeochemical Consequences Over Multiple Timescales”. Bioscience 64, no. 2. Bioscience (2014): 105-116. doi:10.1093/biosci/bit017.
. “Terrestrial Ecosystems At Toolik Lake, Alaska”. In A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes, 90-142. A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.003.0005.
. “Convergence Of Soil Nitrogen Isotopes Across Global Climate Gradients”. Scientific Reports 5. Scientific Reports (2015): 8280. doi:10.1038/srep08280.
. “Recovery Of Arctic Tundra From Thermal Erosion Disturbance Is Constrained By Nutrient Accumulation: A Modeling Analysis”. Ecological Applications 25, no. 5. Ecological Applications (2015): 1271-1289. doi:10.1890/14-1323.1.
. “Biomass Offsets Little Or None Of Permafrost Carbon Release From Soils, Streams, And Wildfire: An Expert Assessment”. Environmental Research Letters 11. Environmental Research Letters (2016): 034014. doi:10.1088/1748-9326/11/3/034014.
. “Limited Overall Impacts Of Ectomycorrhizal Inoculation On Recruitment Of Boreal Trees Into Arctic Tundra Following Wildfire Belie Species-Specific Responses”. Plos One 15, no. 7. Plos One (2020): e0235932. doi:10.1371/journal.pone.0235932.
. “Range Shifts In A Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses And Gainsabstract”. Environmental Research Letters 17, no. 4. Environmental Research Letters (2022): 045024. doi:10.1088/1748-9326/ac6005.
.