Bibliography
“Model Responses To Co 2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32, no. 1. Ecological Applications (2022). doi:10.1002/eap.v32.110.1002/eap.2478.
. “Small But Mighty: Impacts Of Rodent‐Herbivore Structures On Carbon And Nutrient Cycling In Arctic Tundra”. Functional Ecology 36, no. 9. Functional Ecology (2022): 2331 - 2343. doi:10.1111/1365-2435.14127.
. “Variation In White Spruce Needle Respiration At The Species Range Limits: A Potential Impediment To Northern Expansion”. Plant, Cell & Environment 45, no. 7. Plant, Cell & Environment (2022): 2078 - 2092. doi:10.1111/pce.14333.
. “Vertical Gradients In Photosynthetic Physiology Diverge At The Latitudinal Range Extremes Of White Spruce”, 2022. doi:10.1101/2022.05.06.490824.
. “A Mechanism Of Expansion: Arctic Deciduous Shrubs Capitalize On Warming-Induced Nutrient Availability”. Oecologia 192, no. 3. Oecologia (2020): 671 - 685. doi:10.1007/s00442-019-04586-8.
. “Eavesdropping On The Arctic: Automated Bioacoustics Reveal Dynamics In Songbird Breeding Phenology”. Science Advances 4, no. 6. Science Advances (2018). doi:10.1126/sciadv.aaq1084.
. “Late-Season Snowfall Is Associated With Decreased Offspring Survival In Two Migratory Arctic-Breeding Songbird Species”. Journal Of Avian Biology 49, no. 9. Journal Of Avian Biology (2018). doi:10.1111/jav.01712.
. “Shrub Shading Moderates The Effects Of Weather On Arthropod Activity In Arctic Tundra”. Ecological Entomology 43, no. 5. Ecological Entomology (2018): 647 - 655. doi:10.1111/een.12644.
. “Weathering The Storm: Do Arctic Blizzards Cause Repeatable Changes In Stress Physiology And Body Condition In Breeding Songbirds?”. General And Comparative Endocrinology 267. General And Comparative Endocrinology (2018): 183 - 192. doi:10.1016/j.ygcen.2018.07.004.
. “Extreme Spring Conditions In The Arctic Delay Spring Phenology Of Long-Distance Migratory Songbirds”. Oecologia 185, no. 1. Oecologia (2017): 69 - 80. doi:10.1007/s00442-017-3907-3.
. “A Gradient Of Nutrient Enrichment Reveals Nonlinear Impacts Of Fertilization On Arctic Plant Diversity And Ecosystem Function”. Ecology And Evolution 7, no. 7. Ecology And Evolution (2017): 2449 - 2460. doi:10.1002/ece3.2863.
. “Breeding On The Leading Edge Of A Northward Expansion: Differences In Morphology And The Stress Response Of The Arctic Gambel's White-Crowned Sparrow”. Oecologia 180, no. 1. Oecologia (2016): 33-44. doi:10.1007/s00442-015-3447-7.
. “The Effects Of An Extreme Spring On Body Condition And Stress Physiology In Lapland Longspurs And White-Crowned Sparrows Breeding In The Arctic”. Functional Ecology 237. Functional Ecology (2016): 10-18. doi:10.1016/j.ygcen.2016.07.015.
. “High-Resolution Mapping Of Aboveground Shrub Biomass In Arctic Tundra Using Airborne Lidar And Imagery”. Remote Sensing Of Environment 184. Remote Sensing Of Environment (2016): 361 - 373. doi:10.1016/j.rse.2016.07.026.
. “Lidar Canopy Radiation Model Reveals Patterns Of Photosynthetic Partitioning In An Arctic Shrub”. Agricultural And Forest Meteorology 221. Agricultural And Forest Meteorology (2016): 78 - 93. doi:10.1016/j.agrformet.2016.02.007.
. “Lidar Gives A Bird’s Eye Perspective On Arctic Tundra Breeding Habitat.”. Remote Sensing Of Environment 184. Remote Sensing Of Environment (2016): 337-349. doi:10.1016/j.rse.2016.07.012.
. “Nestling Growth Rates In Relation To Food Abundance And Weather In The Arctic”. Auk 133, no. 2. Auk (2016): 261-272. doi:10.1642/AUK-15-111.1.
. “Analyzing Spectral Signatures As Rapid Indicators Of Leaf Biochemistry In Plants Of The Arctic Tundra”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2015.
. “Changes In Arctic Vegetation And Associated Changes In Resources For Herbivorous Arthropods”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2015.
. “Estimating Aboveground Biomass And Leaf Area Of Low-Stature Arctic Shrubs With Terrestrial Lidar”. Remote Sensing Environment 164. Remote Sensing Environment (2015): 26-35. doi:10.1016/j.rse.2015.02.023.
. “Greater Deciduous Shrub Abundance Extends Tundra Peak Season And Increases Modeled Net Co2 Uptake”. Global Change Biology 21, no. 6. Global Change Biology (2015): 2394-2409. doi:10.1111/gcb.12852.
. “Greater Shrub Dominance Alters Breeding Habitat And Food Resources For Migratory Songbirds In Alaskan Arctic Tundra”. Global Change Biology 21, no. 4. Global Change Biology (2015): 1508-1520. doi:10.1111/gcb.12761.
. “The Impact Of Deciduous Shrub Dominance On Phenology, Carbon Flux, And Arthropod Biomass In The Alaskan Arctic Tundra”. Department Of Earth And Environmental Sciences. Department Of Earth And Environmental Sciences. Columbia University, 2015. doi:10.7916/D8ZG6RV4.
. “Ndvi As A Predictor Of Canopy Arthropod Biomass In The Alaskan Arctic Tundra”. Ecological Applications 25, no. 3. Ecological Applications (2015): 779-790. doi:10.1890/14-0632.1.
. “Spatial Habitat Use Post-Breeding: A Radio-Telemetry Study In Gambel’s White-Crowned Sparrows”. Society For Integrative And Comparative Biology, Annual Meeting. Society For Integrative And Comparative Biology, Annual Meeting. Sacramento, CA, January 2015, 2015.
.