Bibliography
Alaska’s Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. Long-Term Ecological Research Network Series. Long-Term Ecological Research Network Series. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.001.0001.
. “Ecosystem Ecology”. In Ecology. Ecology. Oxford University Press, 2018. doi:10.1093/obo/9780199830060-0202.
. “Sustaining Long-Term Ecological Research: Perspectives From Inside The Lter Program”. In The Challenges Of Long Term Ecological Research: A Historical Analysis, 59:81–116. The Challenges Of Long Term Ecological Research: A Historical Analysis. Cham: Springer International Publishing, 2021. doi:10.1007/978-3-030-66933-1_4.
. “Establishing Relationships Between Organic Carbon Storage, Soil Water Content, And Vegetation Cover With Freeze-Thaw Deformation In The Arctic”. In Igarss 2023 - 2023 Ieee International Geoscience And Remote Sensing Symposium, 87–89. Igarss 2023 - 2023 Ieee International Geoscience And Remote Sensing Symposium, 2023. doi:10.1109/IGARSS52108.2023.10282817.
. “Active Layer Groundwater Flow: The Interrelated Effects Of Stratigraphy, Thaw, And Topography”. Water Resources Research 55. Water Resources Research (2019): 6555–6576. doi:10.1029/2018WR024636.
. “Airborne Laser Scanning And Spectral Remote Sensing Give A Bird's Eye Perspective On Arctic Tundra Breeding Habitat At Multiple Spatial Scales”. Remote Sensing Of Environment 184. Remote Sensing Of Environment (2016): 337–349. doi:10.1016/j.rse.2016.07.012.
. “Arctic Amplification Of Global Warming Strengthened By Sunlight Oxidation Of Permafrost Carbon To Co $_\Textrm2$”. Geophysical Research Letters 47. Geophysical Research Letters (2020). doi:10.1029/2020GL087085.
. “Arctic Concentration–Discharge Relationships For Dissolved Organic Carbon And Nitrate Vary With Landscape And Season”. Limnology And Oceanography 66. Limnology And Oceanography (2021). doi:10.1002/lno.11682.
. “The Arctic Plant Aboveground Biomass Synthesis Dataset”. Scientific Data 11. Scientific Data (2024): 305. doi:10.1038/s41597-024-03139-w.
. “Assessing The Prevalence, Products, And Pathways Of Dissolved Organic Matter Partial Photo-Oxidation In Arctic Surface Waters”. Environmental Science: Processes & Impacts 22. Environmental Science: Processes & Impacts (2020): 1214–1223. doi:10.1039/C9EM00504H.
. “Assessing The Spatial Variability In Peak Season Co≪Sub≫2≪/Sub≫ Exchange Characteristics Across The Arctic Tundra Using A Light Response Curve Parameterization”. Biogeosciences 11. Biogeosciences (2014): 4897–4912. doi:10.5194/bg-11-4897-2014.
. “Aufeis Fields As Novel Groundwater-Dependent Ecosystems In The Arctic Cryosphere”. Limnology And Oceanography 66. Limnology And Oceanography (2021): 607–624. doi:10.1002/lno.11626.
. “Belowground Community Responses To Fire: Meta-Analysis Reveals Contrasting Responses Of Soil Microorganisms And Mesofauna”. Oikos 128. Oikos (2019): 309–327. doi:10.1111/oik.05738.
. “Benthic Community Metabolism In Deep And Shallow Arctic Lakes During 13 Years Of Whole-Lake Fertilization: Nutrient Effects On Arctic Lake Benthos”. Limnology And Oceanography 60. Limnology And Oceanography (2015): 1604–1618. doi:10.1002/lno.10120.
. “Biogeochemical Responses Over 37 Years To Manipulation Of Phosphorus Concentrations In An Arctic River: The Upper Kuparuk River Experiment”. Hydrological Processes 35. Hydrological Processes (2021). doi:10.1002/hyp.14075.
. “Breeding On The Leading Edge Of A Northward Expansion: Differences In Morphology And The Stress Response Of The Arctic Gambel’s White-Crowned Sparrow”. Oecologia 180. Oecologia (2016): 33–44. doi:10.1007/s00442-015-3447-7.
. “Changes In The Structure And Function Of Northern Alaskan Ecosystems When Considering Variable Leaf-Out Times Across Groupings Of Species In A Dynamic Vegetation Model”. Global Change Biology 20. Global Change Biology (2014): 963–978. doi:10.1111/gcb.12392.
. “A Changing Menu In A Changing Climate: Using Experimental And Long‐Term Data To Predict Invertebrate Prey Biomass And Availability In Lakes Of Arctic Alaska”. Freshwater Biology 63. Freshwater Biology (2018): 1352–1364. doi:10.1111/fwb.13162.
. “Circum-Arctic Distribution Of Chemical Anti-Herbivore Compounds Suggests Biome-Wide Trade-Off In Defence Strategies In Arctic Shrubs”. Ecography 2022. Ecography (2022): e06166. doi:10.1111/ecog.06166.
. “Climate Warming Restructures Food Webs And Carbon Flow In High-Latitude Ecosystems”. Nature Climate Change 14. Nature Climate Change (2024): 184–189. doi:10.1038/s41558-023-01893-0.
. “Climate-Related Variations In Mixing Dynamics In An Alaskan Arctic Lake”. Limnology And Oceanography 54. Limnology And Oceanography (2009): 2401–2417. doi:10.4319/lo.2009.54.6_part_2.2401.
. “Continuous Estimates Of Co $_\Textrm2$ Efflux From Arctic And Boreal Soils During The Snow-Covered Season In Alaska: Arctic And Boreal Winter C Cycles”. Journal Of Geophysical Research: Biogeosciences 113. Journal Of Geophysical Research: Biogeosciences (2008). doi:10.1029/2008jg000715.
. “Contrasting Effects Of Long Term Versus Short-Term Nitrogen Addition On Photosynthesis And Respiration In The Arctic”. Plant Ecology 214. Plant Ecology (2013): 1273–1286. doi:10.1007/s11258-013-0250-6.
. “Controls Of Benthic Nitrogen Fixation And Primary Production From Nutrient Enrichment Of Oligotrophic, Arctic Lakes”. Ecosystems 16. Ecosystems (2013): 1550–1564. doi:10.1007/s10021-013-9701-0.
. “The Controls Of Iron And Oxygen On Hydroxyl Radical (•Oh) Production In Soils”. Soil Systems 3. Soil Systems (2018): 1. doi:10.3390/soilsystems3010001.
.