Bibliography
Export 154 results:
Filters: Keyword is LTER-ARC [Clear All Filters]
“Range Expansion And Ecology Of The Exotic Cladoceran Daphnia Lumholtzi’”. University of Kansas, 2001.
. “Microbial Iron Oxidation In The Arctic Tundra And Its Implications For Biogeochemical Cycling”. Applied And Environmental Microbiology 81. Applied And Environmental Microbiology (2015): 8066–8075. doi:10.1128/aem.02832-15.
. “Eddy Covariance For Quantifying Trace Gas Fluxes From Soils”. Soil 1. Soil (2015): 187–205. doi:10.5194/soil-1-187-2015.
. “Interannual, Summer, And Diel Variability Of Ch $_\Textrm4$ And Co $_\Textrm2$ Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environmental Science: Processes & Impacts. Environmental Science: Processes & Impacts (2020): 10.1039.D0EM00125B. doi:10.1039/d0em00125b.
. “Interannual And Seasonal Patterns Of Carbon Dioxide, Water, And Energy Fluxes From Ecotonal And Thermokarst‐Impacted Ecosystems On Carbon‐Rich Permafrost Soils In Northeastern Siberia”. Journal Of Geophysical Research: Biogeosciences 122. Journal Of Geophysical Research: Biogeosciences (2017): 2651–2668. doi:10.1002/2017JG004070.
. “Changes In The Structure And Function Of Northern Alaskan Ecosystems When Considering Variable Leaf-Out Times Across Groupings Of Species In A Dynamic Vegetation Model”. Global Change Biology 20. Global Change Biology (2014): 963–978. doi:10.1111/gcb.12392.
. “Long-Term Warming In Alaska Enlarges The Diazotrophic Community In Deep Soils”. Mbio 10. Mbio (2019): e02521–18. doi:10.1128/mBio.02521-18.
. “Interspecific And Intraspecific Variation In Leaf Toughness Of Arctic Plants In Relation To Habitat And Nutrient Supply”. Arctic Science. Arctic Science (2021): 1–15. doi:10.1139/as-2020-0016.
. “Summer Sedimentation In Six Shallow Arctic Lakes”. Hydrobiologia 621. Hydrobiologia (2009): 75–84. doi:10.1007/s10750-008-9633-4.
. “Controls Of Benthic Nitrogen Fixation And Primary Production From Nutrient Enrichment Of Oligotrophic, Arctic Lakes”. Ecosystems 16. Ecosystems (2013): 1550–1564. doi:10.1007/s10021-013-9701-0.
. “Diel, Seasonal, And Inter-Annual Variation In Carbon Dioxide Effluxes From Lakes And Reservoirs”. Environmental Research Letters 18. Environmental Research Letters (2023): 034046. doi:10.1088/1748-9326/acb834.
. “High Leaf Respiration Rates May Limit The Success Of White Spruce Saplings Growing In The Kampfzone At The Arctic Treeline”. Frontiers In Plant Science 12. Frontiers In Plant Science (2021): 746464. doi:10.3389/fpls.2021.746464.
. “Extracellular Electron Transfer May Be An Overlooked Contribution To Pelagic Respiration In Humic-Rich Freshwater Lakes”. American Society For Microbiology 4. American Society For Microbiology (2019): e00436–18. doi:10.1128/mSphere.00436-18.
. “Convergence In The Temperature Response Of Leaf Respiration Across Biomes And Plant Functional Types”. Proceedings Of The National Academy Of Sciences Of The United States Of America 113. Proceedings Of The National Academy Of Sciences Of The United States Of America (2016): 3832–3837. doi:10.1073/pnas.1520282113.
. “Root-Associated Fungi And Acquisitive Root Traits Facilitate Permafrost Nitrogen Uptake From Long-Term Experimentally Warmed Tundra”. New Phytologist n/a. New Phytologist (2024). doi:10.1111/nph.19521.
. Alaska’s Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. Long-Term Ecological Research Network Series. Long-Term Ecological Research Network Series. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.001.0001.
. “The Us Long Term Ecological Research Program”. Bioscience 53. Bioscience (2003): 21–32. doi:10.1641/0006-3568(2003)053[0021:TULTER]2.0.CO;2.
. “Recruitment Dynamics And Population Structure Of Willows In Tundra Disturbed By Retrogressive Thaw Slump Thermokarst On Alaska’s North Slope”. Perspectives In Plant Ecology, Evolution And Systematics 41. Perspectives In Plant Ecology, Evolution And Systematics (2019): 125494. doi:10.1016/j.ppees.2019.125494.
. “Retrogressive Thaw Slumps In The Alaskan Low Arctic May Influence Tundra Shrub Growth More Strongly Than Climate”. Ecosphere 13. Ecosphere (2022): e4106. doi:10.1002/ecs2.4106.
. “Microsite Conditions In Retrogressive Thaw Slumps May Facilitate Increased Seedling Recruitment In The Alaskan Low Arctic”. Ecology And Evolution 9. Ecology And Evolution (2019): 1880–1897. doi:10.1002/ece3.4882.
. “Aufeis Fields As Novel Groundwater-Dependent Ecosystems In The Arctic Cryosphere”. Limnology And Oceanography 66. Limnology And Oceanography (2021): 607–624. doi:10.1002/lno.11626.
. “Seasonal Changes In Light Availability Modify The Temperature Dependence Of Secondary Production In An Arctic Stream”. Ecology. Ecology (2019): e02690. doi:10.1002/ecy.2690.
. “Seasonal Changes In Light Availability Modify The Temperature Dependence Of Ecosystem Metabolism In An Arctic Stream”. Ecology 95. Ecology (2014): 2826–2839. doi:10.1890/13-1963.1.
. “Biogeochemical Responses Over 37 Years To Manipulation Of Phosphorus Concentrations In An Arctic River: The Upper Kuparuk River Experiment”. Hydrological Processes 35. Hydrological Processes (2021). doi:10.1002/hyp.14075.
. “Ndvi Changes In The Arctic: Functional Significance In The Moist Acidic Tundra Of Northern Alaska”. Plos One 18. Plos One (2023): e0285030. doi:10.1371/journal.pone.0285030.
.