Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Ecosystem Feedbacks And Cascade Processes: Understanding Their Role In The Responses Of Arctic And Alpine Ecosystems To Environmental Change”. Global Change Biology 15, no. 5. Global Change Biology (2009): 1153-1172. doi:10.1111/j.1365-2486.2008.01801.x.
. “Stream Dissolved Organic Matter In Permafrost Regions Shows Surprising Compositional Similarities But Negative Priming And Nutrient Effects”. Global Biogeochemical Cycles 35. Global Biogeochemical Cycles (2021). doi:10.1029/2020gb006719.
. “A Coupled Field And Modeling Approach For The Analysis Of Nitrogen Cycling In Streams”. Journal Of The North American Benthological Society 18. Journal Of The North American Benthological Society (1999): 199-221. doi:10.2307/1468461.
. “Relationship Between River Size And Nutrient Removal”. Geophysical Research Letters 33, no. 6. Geophysical Research Letters (2006): L06410. doi:10.1029/2006GL025845.
. “Influence Of Stream Size On Ammonium And Suspended Particulate Nitrogen Processing”. Limnology And Oceanography 46, no. 1. Limnology And Oceanography (2001): 1-13. doi:10.4319/lo.2001.46.1.0001.
. “Linking The Green And Brown Worlds: The Prevalence And Effect Of Multichannel Feeding In Food Webs”. Ecology 95, no. 12. Ecology (2014): 3376 - 3386. doi:10.1890/13-1721.1.
. “Soil Nutrient Availability Affects Tundra Plant Community Composition And Plant–Vole Interactions”. Arctic, Antarctic, And Alpine Research 56. Arctic, Antarctic, And Alpine Research (2024): 2356276. doi:10.1080/15230430.2024.2356276.
. “Primary Production Of An Arctic Watershed: An Uncertainty Analysis”. Ecological Applications 11, no. 6. Ecological Applications (2001): 1800-1816. doi:10.1890/1051-0761%282001%29011%5B1800%3APPOAAW%5D2.0.CO%3B2.
. “Identifying Differences In Carbon Exchange Among Arctic Ecosystem Types”. Ecosystems 9, no. 2. Ecosystems (2006): 288-304. doi:10.1007/s10021-005-0146-y.
. “Vegetation Characteristics And Primary Productivity Along An Arctic Transect: Implications For Scaling-Up”. Journal Of Ecology 87, no. 5. Journal Of Ecology (1999): 885-898. doi:10.1046/j.1365-2745.1999.00404.x.
. “Arctic Canopy Photosynthetic Efficiency Enhanced Under Diffuse Light, Linked To A Reduction In The Fraction Of The Canopy In Deep Shade”. New Phytologist 202, no. 4. New Phytologist (2014): 1267-1276. doi:10.1111/nph.12750.
. “The Controls On Net Ecosystem Productivity Along An Arctic Transect: A Model Comparison With Flux Measurements”. Global Change Biology 6, no. S1. Global Change Biology (2000): 116-126. doi:10.1046/j.1365-2486.2000.06016.x.
. “Modelling The Soil-Plant-Atmosphere Continuum In A Quercus-Acer Stand At Harvard Forest: The Regulation Of Stomatal Conductance By Light, Nitrogen, And Soil/Plant Hydraulic Properties”. Plant, Cell And Environment 19, no. 8. Plant, Cell And Environment (1996): 911-927. doi:10.1111/j.1365-3040.1996.tb00456.x.
. “Predicting Gross Primary Productivity In Terrestrial Ecosystems”. Ecological Applications 7, no. 3. Ecological Applications (1997): 882-894. doi:10.1890/1051-0761%281997%29007%5B0882%3APGPPIT%5D2.0.CO%3B2.
. “Asynchrony Among Local Communities Stabilises Ecosystem Function Of Metacommunities”. Ecology Letters 20, no. 12. Ecology Letters (2017): 1534 - 1545. doi:10.1111/ele.12861.
. “Energy Input Is A Primary Controller Of Methane Bubbling In Subarctic Lakes”. Geophysical Research Letters 41, no. 2. Geophysical Research Letters (2014): 555-560. doi:10.1002/2013gl058510.
. “Energy Input Is Primary Controller Of Methane Bubbling In Subarctic Lakes: Wik Et. Al.; Energy Input Controls Methane Ebullition”. Geophysical Research Letters 41. Geophysical Research Letters (2014): 555–560. doi:10.1002/2013gl058510.
. “Bioavailability Of Dissolved Organic Carbon Across A Hillslope Chronosequence In The Kuparuk River Region, Alaska”. Soil Biology And Biochemistry 79. Soil Biology And Biochemistry (2014): 25-33. doi:10.1016/j.soilbio.2014.08.020.
. “Effects Of Ph And Calcium On Soil Organic Matter Dynamics In Alaskan Tundra”. Biogeochemistry 111, no. 1-3. Biogeochemistry (2012): 569-581. doi:10.1007/s10533-011-9688-6.
. “The Arctic Freshwater System: Changes And Impacts”. Journal Of Geophysical Research: Biogeosciences 112, no. G4. Journal Of Geophysical Research: Biogeosciences (2007): G04S54. doi:10.1029/2006JG000353.
. “Intercomparison, Interpretation, And Assessment Of Spring Phenology In North America Estimated From Remote Sensing For 1982-2006”. Global Change Biology 15. Global Change Biology (2009): 2335–2359. doi:10.1111/j.1365-2486.2009.01910.x.
. “Chemical Influences On 14C And 15C Primary Production In An Arctic Lake”. Polar Biology 5. Polar Biology (1986): 211-219. doi:10.1007/BF00446089.
. “Influence Of Temperature And Light On Rates Of Inorganic Nitrogen Transport By Algae In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 41, no. 9. Canadian Journal Of Fisheries And Aquatic Sciences (1984): 1310-1318. doi:10.1139/f84-160.
. “Diel Variations In Inorganic Carbon And Nitrogen Uptake By Phytoplankton In An Arctic Lake”. Journal Of Plankton Research 6, no. 4. Journal Of Plankton Research (1984): 571-590. doi:10.1093/plankt/6.4.571.
. “Nitrogen, Phosphorus And Organic Carbon Cycling In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 42. Canadian Journal Of Fisheries And Aquatic Sciences (1985): 797-808. doi:10.1139/f85-102.
.