Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Carbon Cycling In The Kuparuk Basin: Plant Production, Carbon Storage, And Sensitivity To Future Changes”. Journal Of Geophysical Research: Atmospheres 103, no. D22. Journal Of Geophysical Research: Atmospheres (1998): 29065-29073. doi:10.1029/98jd00804.
. “Plant Responses To Species Removal And Experimental Warming In Alaskan Tussock Tundra”. Oikos 84. Oikos (1999): 417-434. doi:10.2307/3546421.
. “The Effect Of Grazing By Microprotozoans On Production Of Bacteria”. Archives Of Hydrobiology 31. Archives Of Hydrobiology (1988): 281-288.
. “Foliar And Soil Nutrients In Tundra On Glacial Landscapes Of Contrasting Ages In Northern Alaska”. Oecologia 131, no. 3. Oecologia (2002): 453-462. doi:10.1007/s00442-002-0892-x.
. “Microbial Control Of Dissolved Organic Carbon In Lakes: Research For The Future”. Hydrobiologia 73. Hydrobiologia (1992): 169-180. doi:10.1007/BF00006999.
. “Mycorrhizal Fungi Supply Nitrogen To Host Plants In Arctic Tundra And Boreal Forests: 15N Is The Key Signal”. Canadian Journal Of Microbiology 55. Canadian Journal Of Microbiology (2009): 84-94. doi:10.1139/W08-127.
. “A Synthesis: The Role Of Nutrients As Constraints On Carbon Balances In Boreal And Arctic Regions”. Plant And Soil 242. Plant And Soil (2002): 163-170. doi:10.1023/A:1019670731128.
. “Ecosystem Responses To Climate Change At A Low Arctic And A High Arctic Long-Term Research Site”. Ambio 46, no. S1. Ambio (2017): 160 - 173. doi:10.1007/s13280-016-0870-x.
. “Seasonal Patterns Of Bacterial Abundance In An Arctic Lake”. Arctic And Alpine Research 15, no. 2. Arctic And Alpine Research (1983): 253-259. doi:10.2307/1550926.
. “The Response Of Tundra Plant Biomass, Aboveground Production, Nitrogen, And Co2 Flux To Experimental Warming”. Ecology 79, no. 5. Ecology (1998): 1526-1544. doi:10.1890/0012-9658%281998%29079%5B1526%3ATROTPB%5D2.0.CO%3B2.
. “Natural Abundance Of 15N In Nitrogen-Limited Forests And Tundra Can Estimate Nitrogen Cycling Through Mycoorrhizal Fungi: A Review”. Ecosystems 11, no. 5. Ecosystems (2008): 815-830. doi:10.1007/s10021-008-9159-7.
. “Microbes In Nature Are Limited By Carbon And Energy: The Starving-Survival Lifestyle In Soil And Consequences For Estimating Microbial Rates”. Frontiers In Microbiology 4. Frontiers In Microbiology (2013): 324. doi:10.3389/fmicb.2013.00324.
. “The Us Long Term Ecological Research Program”. Bioscience 53. Bioscience (2003): 21–32. doi:10.1641/0006-3568(2003)053[0021:TULTER]2.0.CO;2.
. “Carbon And Nitrogen Cycling In Soils From Acidic And Nonacidic Tundra With Different Glacial Histories In Northern Alaska”. Ecosystems 5. Ecosystems (2002): 761-774. doi:10.1007/s10021-002-0185-6.
. “The U.s. Long Term Ecological Research (Lter) Program”. Bioscience 53, no. 1. Bioscience (2003): 21-32. doi:10.1641/0006-3568(2003)053%5B0021:TULTER%5D2.0.CO;2.
. “An Experimental Test Of Limits To Tree Establishment In Arctic Tundra”. Journal Of Ecology 86. Journal Of Ecology (1998): 449-461. doi:10.1046/j.1365-2745.1998.00278.x.
. “A Meta-Analysis Of Context-Dependency In Plant Response To Inoculation With Mycorrhizal Fungi”. Ecology Letters 13, no. 3. Ecology Letters (2010): 394-407. doi:10.1111/j.1461-0248.2009.01430.x.
. “A Review Of Open Top Chamber (Otc) Performance Across The Itex Network”. Arctic Science. Arctic Science (2022). doi:10.1139/as-2022-0030.
. “Microsite Conditions In Retrogressive Thaw Slumps May Facilitate Increased Seedling Recruitment In The Alaskan Low Arctic”. Ecology And Evolution 9. Ecology And Evolution (2019): 1880–1897. doi:10.1002/ece3.4882.
. “Retrogressive Thaw Slumps In The Alaskan Low Arctic May Influence Tundra Shrub Growth More Strongly Than Climate”. Ecosphere 13. Ecosphere (2022): e4106. doi:10.1002/ecs2.4106.
. “Recruitment Dynamics And Population Structure Of Willows In Tundra Disturbed By Retrogressive Thaw Slump Thermokarst On Alaska’s North Slope”. Perspectives In Plant Ecology, Evolution And Systematics 41. Perspectives In Plant Ecology, Evolution And Systematics (2019): 125494. doi:10.1016/j.ppees.2019.125494.
. “The Effects Of Nutrient Limitation And Stream Discharge On The Epilithic Microbial Community In An Oligotrophic Arctic Stream”. Hydrobiologia 172. Hydrobiologia (1989): 19-26. doi:10.1007/Bf00031609.
. “Aufeis Fields As Novel Groundwater-Dependent Ecosystems In The Arctic Cryosphere”. Limnology And Oceanography 66. Limnology And Oceanography (2021): 607–624. doi:10.1002/lno.11626.
. “Aufeis Fields As Novel Groundwater‐Dependent Ecosystems In The Arctic Cryosphere”. Limnology And Oceanography. Limnology And Oceanography (2020). doi:10.1002/lno.11626.
. “Seasonal Changes In Light Availability Modify The Temperature Dependence Of Secondary Production In An Arctic Stream”. Ecology. Ecology (2019): e02690. doi:10.1002/ecy.2690.
.