Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“A Multivariate Approach To The Analysis Of Factorial Fertilization Experiments In Alaskan Arctic Tundra”. Ecology 63, no. 4. Ecology (1982): 1029-1038. doi:10.2307/1937242.
. “A Multivariate Approach To Plant Mineral Nutrition: Dose–Response Relationships And Nutrient Dominance In Factorial Experiments”. Canadian Journal Of Botany 63. Canadian Journal Of Botany (1985): 2138–2143. doi:10.1139/b85-302.
. “A Multivariate Approach To Plant Mineral Nutrition: Dose-Response Relationships And Nutrient Dominance In Factorial Experiments”. Canadian Journal Of Botany 63, no. 12. Canadian Journal Of Botany (1985): 2138-2143. doi:10.1139/b85-302.
. “Multiple Thermo-Erosional Episodes During The Past Six Millennia: Implications For The Response Of Arctic Permafrost To Climate Change”. Geology 44. Geology (2016): 439–442. doi:10.1130/g37693.1.
. “Multi-Offset Gpr Methods For Hyporheic Zone Investigations”. Near Surface Geophysics 7, no. 4. Near Surface Geophysics (2009): 247-257. doi:10.3997/1873-0604.2008034.
. “A Multi-Lake Comparative Analysis Of The General Lake Model (Glm): Stress-Testing Across A Global Observatory Network”. Environmental Modelling & Software 102. Environmental Modelling & Software (2018): 274 - 291. doi:10.1016/j.envsoft.2017.11.016.
. “Multi-Decadal Changes In Tundra Environments And Ecosystems: Synthesis Of The International Polar Year-Back To The Future Project (Ipy-Btf)”. Ambio 40, no. 6. Ambio (2011): 705-16. doi:10.1007/s13280-011-0179-8.
. “Modern And Historic Atmospheric Mercury Fluxes In Northern Alaska: Global Sources And Arctic Depletion”. Environmental Science And Technology 39. Environmental Science And Technology (2005): 557-568. doi:10.1021/es049128x.
. “Modelling The Soil-Plant-Atmosphere Continuum In A Quercus-Acer Stand At Harvard Forest: The Regulation Of Stomatal Conductance By Light, Nitrogen, And Soil/Plant Hydraulic Properties”. Plant, Cell And Environment 19, no. 8. Plant, Cell And Environment (1996): 911-927. doi:10.1111/j.1365-3040.1996.tb00456.x.
. “Modelling The Fate And Transport Of Negatively Buoyant Storm–River Water In Small Multi-Basin Lakes”. Environmental Modelling & Software 25. Environmental Modelling & Software (2010): 146–157. doi:10.1016/j.envsoft.2009.07.002.
. “Modelling The Fate And Transport Of Negatively Buoyant Storm–River Water In Small Multi-Basin Lakes”. Environmental Modeling And Software 25, no. 1. Environmental Modeling And Software (2009): 146-157. doi:10.1016/j.envsoft.2009.07.002.
. “Modelling In-Pool Temperature Variability In A Beaded Arctic Stream”. Hydrological Processes 26, no. 25. Hydrological Processes (2012): 3921-3933. doi:10.1002/hyp.8419.
. “Modelling Carbon Responses Of Tundra Ecosystems To Historical And Projected Climate: Sensitivity Of Pan-Arctic Carbon Storage To Temporal And Spatial Variation In Climate”. Global Change Biology 6. Global Change Biology (2000): 141-159. doi:10.1046/j.1365-2486.2000.06017.x.
. “Modeling Trophic Pathways, Nutrient Cycling, And Dynamic Stability In Soils”. Pedobiologia 49. Pedobiologia (2005): 499-510. doi:10.1016/j.pedobi.2005.05.008.
. “Modeling Transport And Fate Of Riverine Dissolved Organic Carbon In The Arctic Ocean”. Global Biogeochemical Cycles 23, no. 4. Global Biogeochemical Cycles (2009): GB4006. doi:10.1029/2008GB003396.
. “Modeling The Effects Of Snowpack On Heterotrophic Respiration Across Northern Temperate And High Latitude Regions: Comparison With Measurements Of Atmospheric Carbon Dioxide In High Latitudes”. Biogeochemistry 48. Biogeochemistry (2000): 94-114. doi:10.1023/A:1006286804351.
. “Modeling Snowcover Hyeterogeneity Over Complex Terrain For Regional And Global Climate Models”. Journal Of Hydrometeorology 5. Journal Of Hydrometeorology (2004): 33-48. doi:10.1175/1525-7541(2004)005%3C0033:MSHOCA%3E2.0.CO;2.
. “Modeling Long‐Term Changes In Tundra Carbon Balance Following Wildfire, Climate Change, And Potential Nutrient Addition”. Ecological Applications 27. Ecological Applications (2017): 105–117. doi:10.1002/eap.1413.
. “Modeling Long-Term Changes In Tundra Carbon Balance Following Wildfire, Climate Change And Potential Nutrient Addition”. Ecological Applications 27, no. 1. Ecological Applications (2017): 105–117 . doi:10.1002/eap.1413.
. “Modeling Lakes And Reservoirs In The Climate System”. Limnology And Oceanography 54, no. 6-2. Limnology And Oceanography (2009): 2315-2329. doi:10.4319/lo.2009.54.6_part_2.2315.
. “Modeling For Understanding V. Modeling For Numbers”. Ecosystems 20. Ecosystems (2017): 215 - 221. doi:10.1007/s10021-016-0067-y.
. “Modeling Coupled Biogeochemical Cycles”. Frontiers In Ecology And The Environment 9, no. 1. Frontiers In Ecology And The Environment (2011): 68-73. doi:10.1890/090223.
. “Modeling Co2 Emissions From Arctic Lakes: Model Development And Site-Level Study”. Journal Of Advances In Modeling Earth Systems 9. Journal Of Advances In Modeling Earth Systems (2017). doi:10.1002/2017MS001028.
. “Modeling Carbon–Nutrient Interactions During The Early Recovery Of Tundra After Fire”. Ecological Applications 25, no. 6. Ecological Applications (2015): 1640 - 1652. doi:10.1890/14-1921.1.
. “Modeling Carbon Responses Of Tundra Ecosystems To Historical And Project Climate: A Comparison Of A Plot- And A Global-Scale Ecosystem Model To Identify Process-Based Uncertainties”. Global Change Biology 6, no. s1. Global Change Biology (2000): 127-140. doi:10.1046/j.1365-2486.2000.06009.x.
.