Bibliography
“Above- And Belowground Responses Of Arctic Tundra Ecosystems To Altered Soil Nutrients And Mammalian Herbivory”. Ecology 93, no. 7. Ecology (2012): 1683-1694. doi:10.1890/11-1631.1.
. “Ecological Monitoring At Toolik Field Station: Lessons Learned And Challenges Ahead”. Arctic Biodiversity Congress. Arctic Biodiversity Congress. Trondheim, Norway, 2014.
. “Long-Term Mammalian Herbivory And Nutrient Addition Alter Lichen Community Structure In Alaskan Dry Heath Tundra”. Arctic, Antarctic And Alpine Research 40, no. 1. Arctic, Antarctic And Alpine Research (2008): 65-73. doi:10.1657/1523-0430(06-087)%5BGough%5D2.0.Co;2.
. “Responses Of Moist Non-Acidic Arctic Tundra To Altered Environment: Productivity, Biomass And Species Richness”. Oikos 103. Oikos (2003): 204-216. doi:10.1034/j.1600-0706.2003.12363.x.
. “Effects Of Fish Predation On Larval Chironomid (Diptera, Chironomidae) Communities In An Arctic Ecosystem”. Hydrobiologia 240. Hydrobiologia (1992): 203-212. doi:10.1007/Bf00013461.
. “Effects Of Fish Predation On Chironomid (Diptera: Chironomidae) Communities In Arctic Lakes”. University of Minnesota, 1990.
. “Environmental Control And Intersite Variations Of Phenolics In Betula Nana In Tundra Ecosystems”. New Phytologist 151. New Phytologist (2001): 227-236. doi:10.1046/j.1469-8137.2001.00149.x.
. “Microbes In Thawing Permafrost: The Unknown Variable In The Climate Change Equation”. International Society For Microbial Ecology Journal 6, no. 4. International Society For Microbial Ecology Journal (2012): 709-712. doi:10.1038/ismej.2011.163.
. “Interactions Between Canopy Structure And Leaf Trait Distribution In Arctic Shrub Communities”. School Of Geosciences. School Of Geosciences. University of Edinburgh, 2013.
. “Estimating Aboveground Biomass Of Low-Stature Arctic Shrubs With Terrestrial Lidar”. American Geophysical Union Annual Meeting. American Geophysical Union Annual Meeting. San Francisco, CA, 2014.
. “The Role Of Leaf Carbon Exchange In Arctic Shrub Expansion”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2009.
. “High-Resolution Mapping Of Aboveground Shrub Biomass In Arctic Tundra Using Airborne Lidar And Imagery”. Remote Sensing Of Environment 184. Remote Sensing Of Environment (2016): 361 - 373. doi:10.1016/j.rse.2016.07.026.
. “Estimating Aboveground Biomass And Leaf Area Of Low-Stature Arctic Shrubs With Terrestrial Lidar”. Remote Sensing Environment 164. Remote Sensing Environment (2015): 26-35. doi:10.1016/j.rse.2015.02.023.
. “Hyporheic Exchange And Water Chemistry Of Two Arctic Tundra Streams Of Contrasting Geomorphology”. Journal Of Geophysical Research: Biogeosciences 113, no. G02029. Journal Of Geophysical Research: Biogeosciences (2008): 14pp. doi:10.1029/2007jg000549.
. “Hyporheic Exchange And Biogeochemical Processing In Arctic Tundra Streams”. University of Vermont, 2007.
. “High Leaf Respiration Rates May Limit The Success Of White Spruce Saplings Growing In The Kampfzone At The Arctic Treeline”. Frontiers In Plant Science 12. Frontiers In Plant Science (2021): 746464. doi:10.3389/fpls.2021.746464.
. “Hill Slope Variations In Chlorophyll Fluorescence Indices And Leaf Traits In A Small Arctic Watershed”. Arctic, Antarctic And Alpine Research 45, no. 1. Arctic, Antarctic And Alpine Research (2013): 39-49. doi:10.1657/1938-4246-45.1.39.
. “Variation In White Spruce Needle Respiration At The Species Range Limits: A Potential Impediment To Northern Expansion”. Plant, Cell & Environment 45, no. 7. Plant, Cell & Environment (2022): 2078 - 2092. doi:10.1111/pce.14333.
. “Patterns Of Species Diversity And Productivity At Different Spatial Scales In Herbaceous Plant Communities”. Oikos 89. Oikos (2000): 417-427. doi:10.1034/j.1600-0706.2000.890301.x.
. “A Meta-Analysis Of The Effects Of Detritus On Primary Producers And Consumers In Marine, Freshwater, And Terrestrial Ecosystems”. Oikos 121, no. 10. Oikos (2012): 1507-1515. doi:10.1111/j.1600-0706.2011.19666.x.
. “Biogeochemical Cycling Of Methylmercury In Lakes And Tundra Watersheds Of Arctic Alaska”. Environmental Science And Technology 40, no. 4. Environmental Science And Technology (2006): 1204-1211. doi:10.1021/es051322b.
. “Photodecomposition Of Methylmercury In An Arctic Alaskan Lake”. Environmental Science And Technology 40, no. 4. Environmental Science And Technology (2006): 1212-1216. doi:10.1021/es0513234.
. .
“A Comparison Of Slimy Sculpin (Cottus Cognatus) Populations In Arctic Lakes With And Without Piscivorous Predators”. Hydrobiologia 240. Hydrobiologia (1992): 189-202. doi:10.1007/BF00013460.
. “Arthropod Availability For Migratory Songbirds In Alaskan Tundra: Timing Of Abundance Of Aquatic And Terrestrial Sources”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2012.
.