Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“The Geomorphic-Trophic Hypothesis For Arctic Lake Food Webs”. Vereinigung Verhandlungen International Limnologie 27. Vereinigung Verhandlungen International Limnologie (2000): 3269-3274. doi:10.1080/03680770.1998.11898286.
. “A Geomorphic-Trophic Model For Landscape Control Of Arctic Lake Food Webs”. Bioscience 49, no. 11. Bioscience (1999): 887-897. doi:10.2307/1313648.
. “Global Assessment Of Experimental Climate Warming On Tundra Vegetation: Heterogeneity Over Space And Time”. Ecology Letters 15, no. 2. Ecology Letters (2012): 164-175. doi:10.1111/j.1461-0248.2011.01716.x.
. “Global Change And Arctic Ecosystems: Is Lichen Decline A Function Of Increases In Vascular Plant Biomass?”. Journal Of Ecology 89. Journal Of Ecology (2001): 984-994. doi:10.1111/j.1365-2745.2001.00625.x.
. “Global Change And The Carbon Balance Of Arctic Ecosystems”. Bioscience 42, no. 6. Bioscience (1992): 433-441. doi:10.2307/1311862.
. “Global Change And The Importance Of Fire For The Ecology And Evolution Of Insects”. Current Opinion In Insect Science 29. Current Opinion In Insect Science (2018): 110 - 116. doi:10.1016/j.cois.2018.07.015.
. “Global Change Effects On Plant Communities Are Magnified By Time And The Number Of Global Change Factors Imposed”. Proceedings Of The National Academy Of Sciences 116, no. 36. Proceedings Of The National Academy Of Sciences (2019): 17867 - 17873. doi:10.1073/pnas.1819027116.
. “Global Data Set Of Long-Term Summertime Vertical Temperature Profiles In 153 Lakes”. Scientific Data 8. Scientific Data (2021): 200. doi:10.1038/s41597-021-00983-y.
. “A Global Database Of Lake Surface Temperatures Collected By In Situ And Satellite Methods From 1985–2009”. Scientific Data 2. Scientific Data (2015): 150008. doi:10.1038/sdata.2015.8.
. “Global Environmental Change And The Nature Of Aboveground Net Primary Productivity Responses: Insights From Long-Term Experiments”. Oecologia 177, no. 4. Oecologia (2015): 935-947. doi:10.1007/s00442-015-3230-9.
. “Global Negative Vegetation Feedback To Climate Warming Responses Of Leaf Litter Decomposition Rates In Cold Biomes”. Ecology Letters 10, no. 7. Ecology Letters (2007): 619-627. doi:10.1111/j.1461-0248.2007.01051.x.
. “Global Variability In Leaf Respiration In Relation To Climate, Plant Functional Types And Leaf Traits”. New Phytologist 206, no. 2. New Phytologist (2015): 614 - 636. doi:10.1111/nph.13253.
. “Global Warming And Terrestrial Ecosystems: A Conceptual Framework For Analysis”. Bioscience 50, no. 10. Bioscience (2000): 871-882. doi:10.1641/0006-3568(2000)050%5B0871:GWATEA%5D2.0.CO;2.
. “Global Warming Impacts On Lake Trout In Arctic Lakes”. Limnology And Oceanography 41, no. 5. Limnology And Oceanography (1996): 1102-1108. doi:10.4319/lo.1996.41.5.1102.
. “A Gradient Of Nutrient Enrichment Reveals Nonlinear Impacts Of Fertilization On Arctic Plant Diversity And Ecosystem Function”. Ecology And Evolution 7, no. 7. Ecology And Evolution (2017): 2449 - 2460. doi:10.1002/ece3.2863.
. “Grazing And Nutrient Interactions In Controlling The Activity And Composition Of The Epilithic Algal Community Of An Arctic Lake1: Nutrients, Snails, And Algae”. Limnology And Oceanography 28. Limnology And Oceanography (1983): 133–141. doi:10.4319/lo.1983.28.1.0133.
. “Grazing And Nutrient Interactions In Controlling The Activity And Composition Of The Epilithic Algal Community Of An Arctic Lake”. Limnology And Oceanography 28, no. 1. Limnology And Oceanography (1983): 133-141. doi:10.4319/lo.1983.28.1.0133.
. “Greater Deciduous Shrub Abundance Extends Tundra Peak Season And Increases Modeled Net Co2 Uptake”. Global Change Biology 21, no. 6. Global Change Biology (2015): 2394-2409. doi:10.1111/gcb.12852.
. “Greater Deciduous Shrub Abundance Extends Tundra Peak Season And Increases Modeled Net Co $_\Textrm2$ Uptake”. Global Change Biology 21. Global Change Biology (2015): 2394–2409. doi:10.1111/gcb.12852.
. “Greater Shrub Dominance Alters Breeding Habitat And Food Resources For Migratory Songbirds In Alaskan Arctic Tundra”. Global Change Biology 21, no. 4. Global Change Biology (2015): 1508-1520. doi:10.1111/gcb.12761.
. “Groundwater Controls On Postfire Permafrost Thaw: Water And Energy Balance Effects”. Journal Of Geophysical Research: Earth Surface 123. Journal Of Geophysical Research: Earth Surface (2018): 2677 - 2694. doi:10.1029/2018JF004611.
. “Groundwater Flow And Exchange Across The Land Surface Explain Carbon Export Patterns In Continuous Permafrost Watersheds”. Geophysical Research Letters 45. Geophysical Research Letters (2018): 7596 - 7605. doi:10.1029/2018GL078140.
. “Growing Season And Spatial Variations Of Carbon Fluxes Of Arctic And Boreal Ecosystems In Alaska (Usa)”. Ecological Applications 23, no. 8. Ecological Applications (2013): 1798-1816. doi:10.1890/11-0875.1.
. “Growth And Flowering In Eriophorum Vaginatum: Annual And Latitudinal Variation”. Ecology 67, no. 6. Ecology (1986): 1524-1525. doi:10.2307/1939083.
. “Growth And Tillering Patterns Within Tussocks Of Eriophorum Vaginatum”. Holarctic Ecology 5, no. 2. Holarctic Ecology (1982): 180-186. doi:10.1111/j.1600-0587.1982.tb01034.x.
.