Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Growth Conditions And Vitality Of Sphagnum In A Tundra Community Along The Alaska Pipeline Haul Road ”. Arctic 34, no. 1. Arctic (1981): 48-54. http://www.jstor.org/stable/40509102.
. “Growth Responses Of Sphagnum Hollows To A Growing Season Lengthening Manipulation In Alaskan Arctic Tundra”. Polar Biology 36, no. 1. Polar Biology (2013): 41-50. doi:10.1007/s00300-012-1236-x.
. “Growth Rings Show Limited Evidence For Ungulates’ Potential To Suppress Shrubs Across The Arctic”. Environmental Research Letters 17. Environmental Research Letters (2022): 034013. doi:10.1088/1748-9326/ac5207.
. “Growth Rings Show Limited Evidence For Ungulates’ Potential To Suppress Shrubs Across The Arcticabstract”. Environmental Research Letters. Environmental Research Letters (2022). doi:10.1088/1748-9326/ac5207.
. “Growth, Survivorship And Reproduction Of Daphnia Middendorffiana In Several Arctic Lakes And Ponds”. Journal Of Plankton Research 23. Journal Of Plankton Research (2001): 733-744. doi:10.1093/plankt/23.7.733.
. “Helmets And Invisible Armor: Structures Reducing Predation From Tactile And Visual Planktivores”. Ecology 60. Ecology (1979): 287-294. doi:10.2307/1937657.
. “Herbivore Absence Can Shift Dry Heath Tundra From Carbon Source To Sink During Peak Growing Season”. Environmental Research Letters 16. Environmental Research Letters (2021): 024027. doi:10.1088/1748-9326/abd3d0.
. “Herbivores In Arctic Ecosystems: Effects Of Climate Change And Implications For Carbon And Nutrient Cycling”. Annals Of The New York Academy Of Sciences 1516, no. 1. Annals Of The New York Academy Of Sciences (2022): 28 - 47. doi:10.1111/nyas.14863.
. “Heterocope, An Important Predator Structuring Arctic Pond Zooplankton Communities: A Mesocosm Study”. Vereinigung Verhandlungen International Limnologie 27. Vereinigung Verhandlungen International Limnologie (2001): 3686-3689. doi:10.1080/03680770.1998.11902517.
. “Hierarchical Subdivision Of Arctic Tundra Based On Vegetation Response To Climate, Parent Material And Topography”. Global Change Biology 6, no. S1. Global Change Biology (2000): 19-34. doi:10.1046/j.1365-2486.2000.06010.x.
. “High Leaf Respiration Rates May Limit The Success Of White Spruce Saplings Growing In The Kampfzone At The Arctic Treeline”. Frontiers In Plant Science 12. Frontiers In Plant Science (2021): 746464. doi:10.3389/fpls.2021.746464.
. “Higher Predation Risk For Insect Prey At Low Latitudes And Elevations”. Science 356, no. 6339. Science (2017): 742 - 744. doi:10.1126/science.aaj1631.
. “High-Resolution Mapping Of Aboveground Shrub Biomass In Arctic Tundra Using Airborne Lidar And Imagery”. Remote Sensing Of Environment 184. Remote Sensing Of Environment (2016): 361 - 373. doi:10.1016/j.rse.2016.07.026.
. “Hill Slope Variations In Chlorophyll Fluorescence Indices And Leaf Traits In A Small Arctic Watershed”. Arctic, Antarctic And Alpine Research 45, no. 1. Arctic, Antarctic And Alpine Research (2013): 39-49. doi:10.1657/1938-4246-45.1.39.
. “Historical Changes In Arctic Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 339-346. doi:10.1579/0044-7447%282006%2935%5B339%3AHCIAFE%5D2.0.CO%3B2.
. “Holocene Pollen Records From The Central Arctic Foothills, Northern Alaska: Testing The Role Of Substrate In The Response Of Tundra To Climate Change”. Journal Of Ecology 91. Journal Of Ecology (2003): 1034-1048. doi:10.1046/j.1365-2745.2003.00833.x.
. “Home Site Advantage In Two Long-Lived Arctic Plant Species: Results From Two 30-Year Reciprocal Transplant Studies”. Journal Of Ecology 100, no. 4. Journal Of Ecology (2012): 841-851. doi:10.1111/j.1365-2745.2012.01984.x.
. “Host Identity As A Driver Of Moss-Associated N2 Fixation Rates In Alaska”. Ecosystems 24. Ecosystems (2021): 530–547. doi:10.1007/s10021-020-00534-3.
. “Hourly And Daily Models Of Active Layer Evolution In Arctic Soils”. Ecological Modelling 206, no. 1-2. Ecological Modelling (2007): 131-146. doi:10.1016/j.ecolmodel.2007.03.030.
. “How Long Do Population Level Field Experiments Need To Be? Utilising Data From The 40‐Year‐Old Lter Network”. Ecology Letters 24. Ecology Letters (2021): 1103–1111. doi:10.1111/ele.13710.
. “The Hydraulic Characteristics And Geochemistry Of Hyporheic And Parafluvial Zones In Arctic Tundra Streams, North Slope, Alaska”. Advances In Water Resources 26. Advances In Water Resources (2003): 907-923. doi:10.1016/S0309-1708(03)00078-2.
. “Hydrogen Isotope Fractionation In Leaf Waxes In The Alaskan Arctic Tundra”. Geochimica Et Cosmochimica Acta 213. Geochimica Et Cosmochimica Acta (2017): 216 - 236. doi:10.1016/j.gca.2017.06.028.
. “Hydrologic And Biogeochemical Controls On The Spatial And Temporal Patterns Of Nitrogen And Phosphorus In The Kuparuk River, Arctic Alaska”. Hydrological Processes 22, no. 17. Hydrological Processes (2008): 3294–3309. doi:10.1002/hyp.6920.
. “Hydrologic Modeling Of An Arctic Watershed: Towards Pan-Arctic Predictions”. Journal Of Geophysical Research: Atmospheres 104, no. D22. Journal Of Geophysical Research: Atmospheres (1999): 27507-27518. doi:10.1029/1999JD900845.
. “Hydrological Field Data From A Modeller’s Perspective: Part 1. Diagnostic Tests For Model Structure”. Hydrological Processes 25. Hydrological Processes (2011): 511–522. doi:10.1002/hyp.7841.
.