Bibliography
“Energy Input Is A Primary Controller Of Methane Bubbling In Subarctic Lakes”. Geophysical Research Letters 41, no. 2. Geophysical Research Letters (2014): 555-560. doi:10.1002/2013gl058510.
. “Enhanced Plant Leaf P And Unchanged Soil P Stocks After A Quarter Century Of Warming In The Arctic Tundra”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3838.
. “Environmental And Plant Community Determinants Of Species Loss Following Nitrogen Enrichment”. Ecology Letters 10, no. 7. Ecology Letters (2007): 596-607. doi:10.1111/j.1461-0248.2007.01053.x.
. “Environmental Control And Intersite Variations Of Phenolics In Betula Nana In Tundra Ecosystems”. New Phytologist 151. New Phytologist (2001): 227-236. doi:10.1046/j.1469-8137.2001.00149.x.
. “Environmental Controls Of Foliar Respiration In Arctic Tundra Plants”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2013. doi:10.7916/D8HH6S87.
. “Environmental Controls Over Carbon, Nitrogen And Phosphorus Fractions In Eriophorum Vaginatum In Alaskan Tussock Tundra”. Journal Of Ecology 74, no. 1. Journal Of Ecology (1986): 167-195. doi:10.2307/2260357.
. “Environmental Influences On The Genetic Diversity Of Bacterial Communities In Arctic Streams”. Natural Resources. Natural Resources. University of Vermont, 2009. https://scholarworks.uvm.edu/graddis/131.
. “Environmental Sensitivity Of Ecotypes As A Potential Influence On Primary Productivity”. American Naturalist 136, no. 1. American Naturalist (1990): 126-131. doi:10.1086/285085.
. “Enzymatic And Detrital Influences On The Structure, Function, And Dynamics Of Spatially-Explicit Model Ecosystems”. Biogeochemistry 117, no. 1. Biogeochemistry (2014): 205-227. doi:10.1007/s10533-013-9932-3.
. “Epigeal Spider (Araneae) Communities In Moist Acidic And Dry Heath Tundra At Toolik Lake, Alaska”. Arctic, Antarctic And Alpine Research 43, no. 2. Arctic, Antarctic And Alpine Research (2011): 301-312. doi:10.1657/1938-4246-43.2.301.
. “Epilithic Algal Response To Fertilization And Grazer Activity In An Arctic River”. University of Cincinnati, 1990.
. “Epilithic Chlorophyll A, Photosynthesis And Respiration In Control Of A Tundra Stream”. Hydrobiologia 240. Hydrobiologia (1992): 121-132. doi:10.1007/Bf00013457.
. “Epilithic Diatom Community Response To Years Of Po4 Fertilization: Kuparuk River, Alaska (68 N Lat.)”. Hydrobiologia 240. Hydrobiologia (1992): 103-120. doi:10.1007/BF00013456.
. “Essential Oil Content Of Rhododendron Tomentosum Responds Strongly To Manipulation Of Ecosystem Resources In Arctic Alaska”. Arctic Science. Arctic Science (2022): 1 - 19. doi:10.1139/as-2020-0055.
. “Estimated Ages Of Mature Tussocks Of Eriophorum Vaginatum Along A Latitudinal Gradient In Central Alaska, U.s.a.”. Arctic And Alpine Research 17, no. 1. Arctic And Alpine Research (1985): 1-5. doi:10.2307/1550957.
. “Estimating 3D Variation In Active-Layer Thickness Beneath Arctic Streams Using Ground-Penetrating Radar”. Journal Of Hydrology 373, no. 3-4. Journal Of Hydrology (2009): 479-486. doi:10.1016/j.jhydrol.2009.05.011.
. “Estimating Aboveground Biomass And Leaf Area Of Low-Stature Arctic Shrubs With Terrestrial Lidar”. Remote Sensing Environment 164. Remote Sensing Environment (2015): 26-35. doi:10.1016/j.rse.2015.02.023.
. “Estimating Aboveground Biomass Of Low-Stature Arctic Shrubs With Terrestrial Lidar”. American Geophysical Union Annual Meeting. American Geophysical Union Annual Meeting. San Francisco, CA, 2014.
. “Estimating Discharge In Low-Order Rivers With High-Resolution Aerial Imagery”. Water Resources Research 54, no. 256391021-49211781-241612713251161-2D44841-2711-41-2222556011107444. Water Resources Research (2018): 863 - 878. doi:10.1002/2017WR021868.
. “Estimating Microbial Biomass In Low-Production Ecosystems”. Department Of Biological Sciences. Department Of Biological Sciences. University of Northern Colorado, 2001.
. “Evaluating Photosynthetic Activity Across Arctic-Boreal Land Cover Types Using Solar-Induced Fluorescenceabstract”. Environmental Research Letters 17, no. 11. Environmental Research Letters (2022): 115009. doi:10.1088/1748-9326/ac9dae.
. “Evidence And Implications Of Recent Climate Change In Northern Alaska And Other Arctic Regions”. Climate Change 72, no. 3. Climate Change (2005): 251-298. doi:10.1007/s10584-005-5352-2.
. “Evidence For Dissolved Organic Matter As The Primary Source And Sink Of Photochemically Produced Hydroxyl Radical In Arctic Surface Waters”. Environmental Science Process Impacts 16, no. 4. Environmental Science Process Impacts (2014): 807-822. doi:10.1039/c3em00596h.
. “Evidence Of Microbial Succession On Decaying Leaf Litter In An Arctic Lake”. Canadian Journal Of Microbiology 28, no. 6. Canadian Journal Of Microbiology (1982): 686-695. doi:10.1139/m82-103.
. “The Evolution Of Ecosystem Processes: Growth Rate And Elemental Stoichiometry Of A Key Herbivore In Temperate And Arctic Habitats”. Journal Of Evolutionary Biology 13, no. 5. Journal Of Evolutionary Biology (2000): 845-853. doi:10.1046/j.1420-9101.2000.00215.x.
.