Bibliography
“Reimagine Fire Science For The Anthropocene”. Pnas Nexus 1. Pnas Nexus (2022): pgac115. doi:10.1093/pnasnexus/pgac115.
. “Regional Climate Model Simulation Of Surface Moisture Flux Variations In Northern Terrestrial Regions”. Atmospheric And Climate Sciences 08, no. 01. Atmospheric And Climate Sciences (2018): 29 - 54. doi:10.4236/acs.2018.81003.
. “Re-Evaluation Of The Taxonomy Of Daphnia Longiremis Sars, 1862 (Cladocera): Description Of A New Morph From Alaska”. Crustaceana 38, no. 1. Crustaceana (1980): 1-11. doi:10.1163/156854080X00364.
. “A Reevaluation Of The Search Cycle Of Planktivorous Arctic Graylings \Textit{Thymallus Arcticus”. Canadian Journal Of Fisheries And Aquatic Sciences 45. Canadian Journal Of Fisheries And Aquatic Sciences (1988): 187–192. doi:10.1139/f88-021.
. “A Re-Evaluation Of The Search Cycle Of Planktivorous Arctic Grayling, Thymallus Arcticus”. Canadian Journal Of Fisheries And Aquatic Sciences 45. Canadian Journal Of Fisheries And Aquatic Sciences (1987): 187-192. doi:10.1139/f88-021.
. “Recruitment Dynamics And Population Structure Of Willows In Tundra Disturbed By Retrogressive Thaw Slump Thermokarst On Alaska’s North Slope”. Perspectives In Plant Ecology, Evolution And Systematics 41. Perspectives In Plant Ecology, Evolution And Systematics (2019): 125494. doi:10.1016/j.ppees.2019.125494.
. “Recovery Of Three Arctic Stream Reaches From Experimental Nutrient Enrichment”. Freshwater Biology 52, no. 6. Freshwater Biology (2007): 1077-1089. doi:10.1111/j.1365-2427.2007.01723.x.
. “Recovery Of Productivity And Species Diversity In Tussock Tundra Following Disturbance”. Arctic, Antarctic And Alpine Research 31, no. 3. Arctic, Antarctic And Alpine Research (1999): 254-258. doi:10.2307/1552254.
. “Recovery Of Arctic Tundra From Thermal Erosion Disturbance Is Constrained By Nutrient Accumulation: A Modeling Analysis”. Ecological Applications 25, no. 5. Ecological Applications (2015): 1271-1289. doi:10.1890/14-1323.1.
. “Reconstruction And Analysis Of Historical Changes In Carbon Storage In Arctic Tundra”. Ecology 78, no. 4. Ecology (1997): 1188-1198. doi:10.1890/0012-9658%281997%29078%5B1188%3ARAAOHC%5D2.0.CO%3B2.
. “Reconstructing Solid Precipitation From Snow Depth Measurements And A Land Surface Model”. Water Resources Research 41, no. 9. Water Resources Research (2005): W09401. doi:10.1029/2005wr003965.
. “Reconstructing Disturbances And Their Biogeochemical Consequences Over Multiple Timescales”. Bioscience 64, no. 2. Bioscience (2014): 105-116. doi:10.1093/biosci/bit017.
. “Reconciling Carbon-Cycle Concepts, Terminology, And Methods”. Ecosystems 9, no. 7. Ecosystems (2006): 1041-1050. doi:10.1007/s10021-005-0105-7.
. “Recent Changes In Nitrate And Dissolved Organic Carbon Export From The Upper Kuparuk River, North Slope, Alaska”. Journal Of Geophysical Research: Biogeosciences 112, no. G4. Journal Of Geophysical Research: Biogeosciences (2007): G04S60. doi:10.1029/2006JG000371.
. “Rationale, Concepts And Approach To The Assessment”. Ambio 33, no. 7. Ambio (2004): 393-397. doi:10.1579/0044-7447-33.7.393.
. “Rapid Decline In River Icings Detected In Arctic Alaska: Implications For A Changing Hydrologic Cycle And River Ecosystems”. Geophysical Research Letters 44, no. 7. Geophysical Research Letters (2017): 3228 - 3235. doi:10.1002/2016GL072397.
. “Range Shifts In A Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses And Gainsabstract”. Environmental Research Letters 17, no. 4. Environmental Research Letters (2022): 045024. doi:10.1088/1748-9326/ac6005.
. “Range Shifts In A Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses And Gains”. Environmental Research Letters 17. Environmental Research Letters (2022): 045024. doi:10.1088/1748-9326/ac6005.
. “Rainfall-Runoff Responses On Arctic Hillslopes Underlain By Continuous Permafrost, North Slope, Alaska, Usa”. Hydrological Processes 31. Hydrological Processes (2017): 4092–4106. doi:10.1002/hyp.11294.
. “Rainfall Alters Permafrost Soil Redox Conditions, But Meta-Omics Show Divergent Microbial Community Responses By Tundra Type In The Arctic”. Soil Systems 5. Soil Systems (2021): 17. doi:10.3390/soilsystems5010017.
. “Quantifying Reach‐Average Effects Of Hyporheic Exchange On Arctic River Temperatures In An Area Of Continuous Permafrost”. Water Resources Research 55. Water Resources Research (2019): 1951–1971. doi:10.1029/2018wr023463.
. “Quantifying Reach-Average Effects Of Hyporheic Exchange On Arctic River Temperatures In An Area Of Continuous Permafrost”. Water Resources Research 55. Water Resources Research (2019). doi:10.1029/2018WR023463.
. “Pulse-Labeling Studies Of Carbon Cycling In Arctic Tundra Ecosystems: Contribution Of Photosynthates To Soil Organic Matter”. Global Biogeochemical Cycles 16, no. 4. Global Biogeochemical Cycles (2002): 10-1. doi:10.1029/2001GB001464.
. “Pulse-Labeling Studies Of Carbon Cycling In Arctic Tundra Ecosystems: The Contribution Of Photosynthates To Methane Emission”. Global Biogeochemical Cycles 16, no. 4. Global Biogeochemical Cycles (2002): 1062. doi:10.1029/2001GB001456.
. “Profiles Of Temporal Thaw Depth Beneath Two Arctic Stream Types Using Ground-Penetrating Radar”. Permafrost And Periglacial Processes 17, no. 4. Permafrost And Periglacial Processes (2006): 341-355. doi:10.1002/ppp.566.
.