Bibliography
“Long-Term Experimental Manipulation Of Climate Alters The Ectomycorrhizal Community Of Betula Nana In Arctic Tundra”. Global Change Biology 17, no. 4. Global Change Biology (2011): 1625-1636. doi:10.1111/j.1365-2486.2010.02318.x.
. “Modeling Coupled Biogeochemical Cycles”. Frontiers In Ecology And The Environment 9, no. 1. Frontiers In Ecology And The Environment (2011): 68-73. doi:10.1890/090223.
. “Multi-Decadal Changes In Tundra Environments And Ecosystems: Synthesis Of The International Polar Year-Back To The Future Project (Ipy-Btf)”. Ambio 40, no. 6. Ambio (2011): 705-16. doi:10.1007/s13280-011-0179-8.
. “Postfire Energy Exchange In Arctic Tundra: The Importance And Climatic Implications Of Burn Severity”. Global Change Biology 17, no. 9. Global Change Biology (2011): 2831-2841. doi:10.1111/j.1365-2486.2011.02441.x.
. “Scaling An Instantaneous Model Of Tundra Nee To The Arctic Landscape”. Ecosystems 14, no. 1. Ecosystems (2011): 76-93. doi:10.1007/s10021-010-9396-4.
. “Seasonal And Hydrologic Drivers Of Dissolved Organic Matter And Nutrients In The Upper Kuparuk River, Alaskan Arctic”. Biogeochemistry 103, no. 1-3. Biogeochemistry (2011): 109-124. doi:10.1007/s10533-010-9451-4.
. “Temperature And Soil Organic Matter Decomposition Rates - Synthesis Of Current Knowledge And A Way Forward”. Global Change Biology 17, no. 11. Global Change Biology (2011): 3392-3404. doi:10.1111/j.1365-2486.2011.02496.x.
. “Understanding Burn Severity Sensing In Arctic Tundra: Exploring Vegetation Indices, Suboptimal Assessment Timing And The Impact Of Increasing Pixel Size”. International Journal Of Remote Sensing 32, no. 2. International Journal Of Remote Sensing (2011): 7033-7056. doi:10.1080/01431161.2011.611187.
. “Zooplankton Community Structure In Arctic Ponds: Shifts Related To Pond Size”. Arctic 64, no. 4. Arctic (2011): 483-487. doi:10.14430/arctic4148.
. “Buoyancy Flux, Turbulence, And The Gas Transfer Coefficient In A Stratified Lake”. Geophysical Research Letters 37, no. 24. Geophysical Research Letters (2010): L24604. doi:10.1029/2010gl044164.
. “Clonal Diversity In An Expanding Community Of Arctic Salix Spp. And A Model For Recruitment Modes Of Arctic Plants”. Arctic, Antarctic And Alpine Research 42, no. 4. Arctic, Antarctic And Alpine Research (2010): 406-411. doi:10.1657/1938-4246.42.4.406.
. “Depleted 15N In Hydrolysable-N Of Arctic Soils And Its Implication For Mycorrhizal Fungi–Plant Interaction”. Biogeochemistry 97, no. 2-3. Biogeochemistry (2010): 183-194. doi:10.1007/s10533-009-9365-1.
. “Direct And Indirect Effects Of Fish On Pelagic Nitrogen And Phosphorus Availability In Oligotrophic Arctic Alaskan Lakes”. Canadian Journal Of Fisheries And Aquatic Sciences 67, no. 10. Canadian Journal Of Fisheries And Aquatic Sciences (2010): 1635-1648. doi:10.1139/F10-085.
. “Drought Legacies Influence The Long-Term Carbon Balance Of A Freshwater Marsh”. Journal Of Geophysical Research: Biogeosciences 115, no. G3. Journal Of Geophysical Research: Biogeosciences (2010): 9 pp. doi:10.1029/2009JG001215.
. “A Meta-Analysis Of Context-Dependency In Plant Response To Inoculation With Mycorrhizal Fungi”. Ecology Letters 13, no. 3. Ecology Letters (2010): 394-407. doi:10.1111/j.1461-0248.2009.01430.x.
. “Modelling The Fate And Transport Of Negatively Buoyant Storm–River Water In Small Multi-Basin Lakes”. Environmental Modelling & Software 25. Environmental Modelling & Software (2010): 146–157. doi:10.1016/j.envsoft.2009.07.002.
. “Nitrogen Dynamics In A Small Arctic Watershed: Retention And Downhill Movement Of 15N”. Ecological Monographs 80, no. 2. Ecological Monographs (2010): 331-351. doi:10.1890/08-0773.1.
. “Processing Arctic Eddy-Flux Data Using A Simple Carbon-Exchange Model Embedded In The Ensemble Kalman Filter”. Ecological Applications 20, no. 5. Ecological Applications (2010): 1285-1301. doi:10.1890/09-0876.1.
. “Stream Geochemistry As An Indicator Of Increasing Permafrost Thaw Depth In An Arctic Watershed”. Chemical Geology 273, no. 1–2. Chemical Geology (2010): 76-81. doi:10.1016/j.chemgeo.2010.02.013.
. “Temperature Controls On Aquatic Bacterial Production And Community Dynamics In Arctic Lakes And Streams”. Environmental Microbiology 12, no. 5. Environmental Microbiology (2010): 1319–1333. doi:10.1111/j.1462-2920.2010.02176.x.
. “Variability In Greenhouse Gas Emissions From Permafrost Thaw Ponds”. Limnology And Oceanography 55, no. 1. Limnology And Oceanography (2010): 115-133. doi:10.4319/lo.2010.55.1.0115.
. “Advantages Of A Two Band Evi Calculated From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 149, no. 9. Agricultural And Forest Meteorology (2009): 1560-1563. doi:10.1016/j.agrformet.2009.03.016.
. “Carnivory And Resource-Based Niche Differentiation In Anuran Larvae: Implications For Food Web And Experimental Ecology”. Freshwater Biology 54, no. 3. Freshwater Biology (2009): 572-586. doi:10.1111/j.1365-2427.2008.02134.x.
. “Circumpolar Synchrony In Big River Bacterioplankton”. Proceedings Of The National Academy Of Sciences 106, no. 50. Proceedings Of The National Academy Of Sciences (2009): 21208-21212. doi:10.1073/pnas.0906149106.
. “Climate Related Variations In Mixing Dynamics Of An Alaskan Arctic Lake”. Limnology And Oceanography 54. Limnology And Oceanography (2009): 2401-2417. doi:10.4319/lo.2009.54.6_part_2.2401.
.