Bibliography
“Infrastructure Development Accelerates Range Expansion Of Trembling Aspen (Populus Tremuloides, Salicaceae) Into The Arctic.”. Arctic 69, no. 2. Arctic (2016): 130-136. doi:10.14430/arctic4560.
. “Infrastructure Development Accelerates Range Expansion Of Trembling Aspen (\Textit{Populus Tremuloides, Salicaceae) Into The Arctic”. Arctic 69. Arctic (2016). doi:10.14430/arctic4560.
. “Insights Into The Complete And Partial Photooxidation Of Black Carbon In Surface Waters”. Environmental Science Process Impacts 16, no. 4. Environmental Science Process Impacts (2014): 721-731. doi:10.1039/c3em00597f.
. “Insights Into The Tussock Growth Form With Model Data Fusion”. New Phytologist n/a. New Phytologist (2023). doi:10.1111/nph.18751.
. “Insights Into The Tussock Growth Form With Model–Data Fusion”. New Phytologist. New Phytologist (2023). doi:10.1111/nph.18751.
. “Insolation And Greenhouse Gases Drove Holocene Winter And Spring Warming In Arctic Alaska”. Quaternary Science Reviews 242. Quaternary Science Reviews (2020): 106438. doi:10.1016/j.quascirev.2020.106438.
. “Integration Of Lakes And Streams In A Landscape Perspective: The Importance Of Material Processing On Spatial Patterns And Temporal Coherence”. Freshwater Biology 43. Freshwater Biology (2000): 477-497. doi:10.1046/j.1365-2427.2000.00515.x.
. “Interactions Among Shrub Cover And The Soil Microclimate May Determine Future Arctic Carbon Budgets”. Ecology Letters 15, no. 12. Ecology Letters (2012): 1415-1422. doi:10.1111/j.1461-0248.2012.01865.x.
. “Interactions Between Sunlight And Microorganisms Influence Dissolved Organic Matter Degradation Along The Aquatic Continuum”. Limnology And Oceanography Letters 3. Limnology And Oceanography Letters (2018): 102-116. doi:10.1002/lol2.10060.
. “Interannual And Seasonal Patterns Of Carbon Dioxide, Water, And Energy Fluxes From Ecotonal And Thermokarst‐Impacted Ecosystems On Carbon‐Rich Permafrost Soils In Northeastern Siberia”. Journal Of Geophysical Research: Biogeosciences 122. Journal Of Geophysical Research: Biogeosciences (2017): 2651–2668. doi:10.1002/2017JG004070.
. “Inter-Annual Fidelity To Summer Feeding Sites In Arctic Grayling”. Environmental Biology Of Fishes 59, no. 3. Environmental Biology Of Fishes (2000): 319-327. doi:10.1023/A:1007626507936.
. “Interannual, Summer, And Diel Variability Of Ch $_\Textrm4$ And Co $_\Textrm2$ Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environmental Science: Processes & Impacts. Environmental Science: Processes & Impacts (2020): 10.1039.D0EM00125B. doi:10.1039/d0em00125b.
. “Interannual, Summer, And Diel Variability Of Ch4 And Co2 Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environ. Sci.: Processes Impacts 22. Environ. Sci.: Processes Impacts (2020): 2181-2198. doi:10.1039/D0EM00125B.
. “Inter-Annual Variability Of Ndvi In Response To Long-Term Warming And Fertilization In Wet Sedge And Tussock Tundra”. Oecologia 143, no. 4. Oecologia (2005): 588-597. doi:10.1007/s00442-005-0012-9.
. “Inter-Annual Variability Of Plant Phenology In Tussock Tundra: Modelling Interactions Of Plant Productivity, Snowmelt, And Soil Thaw”. Global Change Biology 9, no. 5. Global Change Biology (2003): 743-758. doi:10.1046/j.1365-2486.2003.00625.x.
. “Inter-Biome Comparison Of Factors Controlling Stream Metabolism”. Freshwater Biology 46. Freshwater Biology (2001): 1503-1517. doi:10.1046/j.1365-2427.2001.00773.x.
. “Intercomparison, Interpretation, And Assessment Of Spring Phenology In North America Estimated From Remote Sensing For 1982-2006”. Global Change Biology 15. Global Change Biology (2009): 2335–2359. doi:10.1111/j.1365-2486.2009.01910.x.
. “Internal Wave Effects On Photosynthesis: Experiments, Theory And Modeling”. Limnology And Oceanography 53. Limnology And Oceanography (2008): 339-353. doi:10.4319/lo.2008.53.1.0339.
. “Interspecific And Intraspecific Variation In Leaf Toughness Of Arctic Plants In Relation To Habitat And Nutrient Supply”. Arctic Science. Arctic Science (2021): 1–15. doi:10.1139/as-2020-0016.
. “Intraspecific Variation In Phenology Offers Resilience To Climate Change For \Textit{Eriophorum Vaginatum”. Arctic Science. Arctic Science (2021): 1–17. doi:10.1139/as-2020-0039.
. “An Inverse Ecosystem Model Of Year-To-Year Variations With First Order Approximation To The Annual Mean Fluxes.”. Ecological Modeling 187. Ecological Modeling (2005): 369–388. doi:10.1016/j.ecolmodel.2005.02.003.
. “An Inverse Ecosystem Model Of Year-To-Year Variations With First Order Approximation To The Annual Mean Fluxes”. Ecological Modelling 187, no. 4. Ecological Modelling (2005): 369-388. doi:10.1016/j.ecolmodel.2005.02.003.
. “Investigating The Controls On Soil Organic Matter Decomposition In Tussock Tundra Soil And Permafrost After Fire”. Soil Biology And Biochemistry 99. Soil Biology And Biochemistry (2016): 108 - 116. doi:10.1016/j.soilbio.2016.04.020.
. “Investigating The Morphological And Genetic Divergence Of Arctic Char ( \Textit{Salvelinus Alpinus) Populations In Lakes Of Arctic Alaska”. Ecology And Evolution 11. Ecology And Evolution (2021): 3040–3057. doi:10.1002/ece3.7211.
. “Isolating The Effects Of Storm Events On Arctic Aquatic Bacteria: Temperature, Nutrients, And Community Composition As Controls On Bacterial Productivity”. Frontiers In Microbiology 6. Frontiers In Microbiology (2015): 250. doi:10.3389/fmicb.2015.00250.
.