Bibliography
“Effects Of Acid On Plant Litter Decomposition In An Arctic Lake”. Applied And Environmental Microbiology 43. Applied And Environmental Microbiology (1982): 1188-1195. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC244204/.
. “Improvements In And Environmental Applications Of Double Vial Radiorespirometry For The Study Of Microbial Mineralization”. Applied And Environmental Microbiology 45. Applied And Environmental Microbiology (1983): 255-259. https://aem.asm.org/content/45/1/255.
. “Effects Of Petroleum Hydrocarbons On Plant Litter Microbiota In An Arctic Lake”. Applied And Environmental Microbiology 43. Applied And Environmental Microbiology (1982): 129-135. https://aem.asm.org/content/43/1/129.
. “Effect Of Hydrocarbons And Ph On Litter Decomposition And Primary Production In An Arctic Lake”. Department Of Biological Sciences. Department Of Biological Sciences. University of Cincinnati, 1981.
. “Mineralization Of Glucose And Lignocellulose By Four Arctic Freshwater Sediments In Response To Nutrient Enrichment”. Applied And Environmental Microbiology 58, no. 2. Applied And Environmental Microbiology (1992): 1554-1563. http://aem.asm.org/content/58/5/1554.full.pdf+html.
. “Climatic Effects On Tundra Carbon Storage Inferred From Experimental Data And A Model”. Ecology 78, no. 4. Ecology (1997): 1170-1187. doi:10.1890/0012-9658%281997%29078%5B1170%3ACEOTCS%5D2.0.CO%3B2.
. “Reconstruction And Analysis Of Historical Changes In Carbon Storage In Arctic Tundra”. Ecology 78, no. 4. Ecology (1997): 1188-1198. doi:10.1890/0012-9658%281997%29078%5B1188%3ARAAOHC%5D2.0.CO%3B2.
. “Resource-Based Niche Provide A Basis For Plant Species Diversity And Dominance In Arctic Tundra”. Nature 415. Nature (2002): 68-71. doi:10.1038/415068a.
. “Modelling Carbon Responses Of Tundra Ecosystems To Historical And Projected Climate: Sensitivity Of Pan-Arctic Carbon Storage To Temporal And Spatial Variation In Climate”. Global Change Biology 6. Global Change Biology (2000): 141-159. doi:10.1046/j.1365-2486.2000.06017.x.
. “Modeling The Effects Of Snowpack On Heterotrophic Respiration Across Northern Temperate And High Latitude Regions: Comparison With Measurements Of Atmospheric Carbon Dioxide In High Latitudes”. Biogeochemistry 48. Biogeochemistry (2000): 94-114. doi:10.1023/A:1006286804351.
. “Global Climate Change And The Equilibrium Responses Of Carbon Storage In Arctic And Subarctic Regions”. In Arctic System Science Modeling Workshop Report, 47-48. Workshop Report. Arctic System Science Modeling Workshop Report. Fairbanks,AK: Arctic Research Consortium of the United States, 1998.
. “Spatial Habitat Use Post-Breeding: A Radio-Telemetry Study In Gambel’s White-Crowned Sparrows”. Society For Integrative And Comparative Biology, Annual Meeting. Society For Integrative And Comparative Biology, Annual Meeting. Sacramento, CA, January 2015, 2015.
. “Northward Displacement Of Optimal Climate Conditions For Ecotypes Of Eriophorum Vaginatum L. Across A Latitudinal Gradient In Alaska”. Global Change Biology 21, no. 10. Global Change Biology (2015): 3827–3835. doi:10.1111/gcb.12991.
. “Disturbances As Hot Spots Of Ecotypic Variation: A Case Study With Dryas Octopetala”. Arctic, Antarctic And Alpine Research 46. Arctic, Antarctic And Alpine Research (2014): 542-547. doi:10.1657/1938-4246-46.3.542.
. “Seedling Density And Seedling Survival In Alaskan Cotton Grass Tussock Tundra”. Holarctic Ecology 5, no. 2. Holarctic Ecology (1982): 212-217. doi:10.1111/j.1600-0587.1982.tb01039.x.
. “Size Structure Of A Lake Trout (Salvelinus Namaycush) Population In An Arctic Lake: Influence Of Angling And Implications For Fish Community Structure”. Canadian Journal Of Fisheries And Aquatic Sciences 46. Canadian Journal Of Fisheries And Aquatic Sciences (1989): 2153-2156. doi:10.1139/f89-266.
. “Fish Simulation Culture Model (Fis-C): A Bioenergetics Based Model For Aquacultural Wasteload Application”. Aquacultural Engineering 15, no. 4. Aquacultural Engineering (1996): 243-259. doi:10.1016/0144-8609(96)00260-9.
. “Distribution, Production, And Age Structure Of Slimy Sculpin In An Arctic Lake”. Environmental Biology Of Fishes 7, no. 2. Environmental Biology Of Fishes (1982): 171-176. doi:10.1007/BF00001788.
. “Cost Of Predation Avoidance In Young-Of-Year Lake Trout (Salvelinus Namaycush): Growth Differential In Sub-Optimal Habitats”. Hydrobiologia 240. Hydrobiologia (1992): 213-218. doi:10.1007/BF00013462.
. “Global Warming Impacts On Lake Trout In Arctic Lakes”. Limnology And Oceanography 41, no. 5. Limnology And Oceanography (1996): 1102-1108. doi:10.4319/lo.1996.41.5.1102.
. “Shifts In Abundance And Growth Of Slimy Sculpin In Response To Changes In The Predator Population In An Arctic Alaskan Lake”. Hydrobiologia 240. Hydrobiologia (1992): 219-224. doi:10.1007/BF00013463.
. “Recent Changes In Nitrate And Dissolved Organic Carbon Export From The Upper Kuparuk River, North Slope, Alaska”. Journal Of Geophysical Research: Biogeosciences 112, no. G4. Journal Of Geophysical Research: Biogeosciences (2007): G04S60. doi:10.1029/2006JG000371.
. “Increasing River Discharge In The Eurasian Arctic: Consideration Of Dams, Permafrost Thaw, And Fires As Potential Agents Of Change”. Journal Of Geophysical Research: Atmospheres 109, no. D18. Journal Of Geophysical Research: Atmospheres (2004): no. 18102. doi:10.1029/2004JD004583.
. “A Pan-Arctic Evaluation Of Changes In River Discharge During The Latter Half Of The 20Th Century”. Geophysical Research Letters 33, no. 6. Geophysical Research Letters (2006): L06715. doi:10.1029/2006GL025753.
. “Assessing The Spatial Variability In Peak Season Co2 Exchange Characteristics Across The Arctic Tundra Using A Light Response Curve Parameterization”. Biogeosciences 11. Biogeosciences (2014): 4897-4912. doi:10.5194/bg-11-4897-2014.
.