Bibliography
“Energy Flow In Arctic Lake Food Webs: The Role Of Glacial History, Fish Predators, And Benthic-Pelagic Linkages”. Utah State University, 2006.
. “Energy Input Is A Primary Controller Of Methane Bubbling In Subarctic Lakes”. Geophysical Research Letters 41, no. 2. Geophysical Research Letters (2014): 555-560. doi:10.1002/2013gl058510.
. “Energy Input Is Primary Controller Of Methane Bubbling In Subarctic Lakes: Wik Et. Al.; Energy Input Controls Methane Ebullition”. Geophysical Research Letters 41. Geophysical Research Letters (2014): 555–560. doi:10.1002/2013gl058510.
. “Enhanced Plant Leaf P And Unchanged Soil P Stocks After A Quarter Century Of Warming In The Arctic Tundra”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3838.
. “Environmental And Plant Community Determinants Of Species Loss Following Nitrogen Enrichment”. Ecology Letters 10, no. 7. Ecology Letters (2007): 596-607. doi:10.1111/j.1461-0248.2007.01053.x.
. “Environmental Control And Intersite Variations Of Phenolics In Betula Nana In Tundra Ecosystems”. New Phytologist 151. New Phytologist (2001): 227-236. doi:10.1046/j.1469-8137.2001.00149.x.
. “Environmental Controls Of Foliar Respiration In Arctic Tundra Plants”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2013. doi:10.7916/D8HH6S87.
. “Environmental Controls Over Carbon, Nitrogen And Phosphorus Fractions In Eriophorum Vaginatum In Alaskan Tussock Tundra”. Journal Of Ecology 74, no. 1. Journal Of Ecology (1986): 167-195. doi:10.2307/2260357.
. “Environmental Influences On The Genetic Diversity Of Bacterial Communities In Arctic Streams”. Natural Resources. Natural Resources. University of Vermont, 2009. https://scholarworks.uvm.edu/graddis/131.
. “Environmental Sensitivity Of Ecotypes As A Potential Influence On Primary Productivity”. American Naturalist 136, no. 1. American Naturalist (1990): 126-131. doi:10.1086/285085.
. “Enzymatic And Detrital Influences On The Structure, Function, And Dynamics Of Spatially-Explicit Model Ecosystems”. Biogeochemistry 117, no. 1. Biogeochemistry (2014): 205-227. doi:10.1007/s10533-013-9932-3.
. “Epigeal Spider (Araneae) Communities In Moist Acidic And Dry Heath Tundra At Toolik Lake, Alaska”. Arctic, Antarctic And Alpine Research 43, no. 2. Arctic, Antarctic And Alpine Research (2011): 301-312. doi:10.1657/1938-4246-43.2.301.
. “Epilithic Algal Response To Fertilization And Grazer Activity In An Arctic River”. University of Cincinnati, 1990.
. “Epilithic Chlorophyll A, Photosynthesis And Respiration In Control Of A Tundra Stream”. Hydrobiologia 240. Hydrobiologia (1992): 121-132. doi:10.1007/Bf00013457.
. “Epilithic Diatom Community Response To Years Of Po4 Fertilization: Kuparuk River, Alaska (68 N Lat.)”. Hydrobiologia 240. Hydrobiologia (1992): 103-120. doi:10.1007/BF00013456.
. “Essential Oil Content Of Rhododendron Tomentosum Responds Strongly To Manipulation Of Ecosystem Resources In Arctic Alaska”. Arctic Science. Arctic Science (2022): 1 - 19. doi:10.1139/as-2020-0055.
. “Essential Oil Content Of \Textit{Rhododendron Tomentosum Responds Strongly To Manipulation Of Ecosystem Resources In Arctic Alaska”. Arctic Science. Arctic Science (2022): 1–19. doi:10.1139/as-2020-0055.
. “Establishing Relationships Between Organic Carbon Storage, Soil Water Content, And Vegetation Cover With Freeze-Thaw Deformation In The Arctic”. In Igarss 2023 - 2023 Ieee International Geoscience And Remote Sensing Symposium, 87–89. Igarss 2023 - 2023 Ieee International Geoscience And Remote Sensing Symposium, 2023. doi:10.1109/IGARSS52108.2023.10282817.
. “Estimated Ages Of Mature Tussocks Of Eriophorum Vaginatum Along A Latitudinal Gradient In Central Alaska, U.s.a.”. Arctic And Alpine Research 17, no. 1. Arctic And Alpine Research (1985): 1-5. doi:10.2307/1550957.
. “Estimating 3D Variation In Active-Layer Thickness Beneath Arctic Streams Using Ground-Penetrating Radar”. Journal Of Hydrology 373, no. 3-4. Journal Of Hydrology (2009): 479-486. doi:10.1016/j.jhydrol.2009.05.011.
. “Estimating Aboveground Biomass And Leaf Area Of Low-Stature Arctic Shrubs With Terrestrial Lidar”. Remote Sensing Environment 164. Remote Sensing Environment (2015): 26-35. doi:10.1016/j.rse.2015.02.023.
. “Estimating Aboveground Biomass Of Low-Stature Arctic Shrubs With Terrestrial Lidar”. American Geophysical Union Annual Meeting. American Geophysical Union Annual Meeting. San Francisco, CA, 2014.
. “Estimating Discharge In Low-Order Rivers With High-Resolution Aerial Imagery”. Water Resources Research 54, no. 256391021-49211781-241612713251161-2D44841-2711-41-2222556011107444. Water Resources Research (2018): 863 - 878. doi:10.1002/2017WR021868.
. “Estimating Discharge In Low‐Order Rivers With High‐Resolution Aerial Imagery”. Water Resources Research 54. Water Resources Research (2018): 863–878. doi:10.1002/2017WR021868.
. “Estimating Microbial Biomass In Low-Production Ecosystems”. Department Of Biological Sciences. Department Of Biological Sciences. University of Northern Colorado, 2001.
.