Bibliography
“Arctic Climate: Potential For Change Under Global Warming”. In Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective, 11-34. Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective. San Diego, CA: Academic Press, 1991.
. .
“Estimated Ages Of Mature Tussocks Of Eriophorum Vaginatum Along A Latitudinal Gradient In Central Alaska, U.s.a.”. Arctic And Alpine Research 17, no. 1. Arctic And Alpine Research (1985): 1-5. doi:10.2307/1550957.
. “Modeling Transport And Fate Of Riverine Dissolved Organic Carbon In The Arctic Ocean”. Global Biogeochemical Cycles 23, no. 4. Global Biogeochemical Cycles (2009): GB4006. doi:10.1029/2008GB003396.
. “Space Use And Habitat Affinities Of The Singing Vole On The Northern Foothills Of The Brooks Range, Alaska.”. Department Of Natural Resources. Department Of Natural Resources. University of New Hampshire, 2015. https://scholars.unh.edu/thesis/1065/.
. “Ground Based Remote Sensing And Physiological Measurements Provide Novel Insights Into Canopy Photosynthetic Optimization In Arctic Shrubs”. American Geophysical Union Annual Meeting. American Geophysical Union Annual Meeting. San Francisco, CA, 2014.
. “Lidar Canopy Radiation Model Reveals Patterns Of Photosynthetic Partitioning In An Arctic Shrub”. Agricultural And Forest Meteorology 221. Agricultural And Forest Meteorology (2016): 78 - 93. doi:10.1016/j.agrformet.2016.02.007.
. “Landscape Effects On Growth Of Age-0 Arctic Grayling In Tundra Streams”. Utah State University, 2006.
. “Modeling Lakes And Reservoirs In The Climate System”. Limnology And Oceanography 54, no. 6-2. Limnology And Oceanography (2009): 2315-2329. doi:10.4319/lo.2009.54.6_part_2.2315.
. “Ecosystem Carbon Storage In Arctic Tundra Reduced By Long-Term Nutrient Fertilization”. Nature 431. Nature (2004): 440-443. doi:10.1038/nature02887.
. “Carbon Loss From An Unprecedented Arctic Tundra Wildfire”. Nature 475, no. 7357. Nature (2011): 489-92. doi:10.1038/nature10283.
. “Describing Fluxes Within Lakes Using Temperature Arrays And Surface Meteorology”. Vereinigung Verhandlungen International Limnologie 30. Vereinigung Verhandlungen International Limnologie (2008): 339-344. doi:10.1080/03680770.2008.11902139.
. “Capturing The Consequences Of Non-Linear Internal Waves In Hydrodynamic Models”. Aslo Annual Meeting. Aslo Annual Meeting. Grenada, Spain, 2015.
. “Sediment Respiration Drives Circulation And Production Of Co 2 In Ice-Covered Alaskan Arctic Lakes”. Limnology And Oceanography Letters. Limnology And Oceanography Letters (2018). doi:10.1002/lol2.10083.
. “The Critical Importance Of Buoyancy Flux For Gas Flux Across The Air-Water Interface”. In Gas Transfer At Water Surfaces, 135-139. Gas Transfer At Water Surfaces. American Geophysical Union, Geophysical Monograph 127., 2002.
. “Physical Pathways Of Nutrient Supply In A Small, Ultra-Oligotrophic Lake During Summer Stratification”. Limnology And Oceanography 51, no. 2. Limnology And Oceanography (2006): 1107-1124. doi:10.4319/lo.2006.51.2.1107.
. “Turbulence At The Air-Water Interface In Lakes Of Different Sizes: Consequences For Gas Transfer Coefficients”. American Geophysical Union Fall Meeting. American Geophysical Union Fall Meeting. San Francisco, 2014.
. “Lakes Across Climate Zones”. In Encyclopedia Of Inland Waters. Encyclopedia Of Inland Waters. Elsevier, 2009.
. “Turbulence: Implications For Emissions Of Greenhouse Gases”. Thaw 2014 - Thermokarst Aquatic Ecosystems Workshop: Freshwater Ecosystems In Changing Permafrost Landscapes. Thaw 2014 - Thermokarst Aquatic Ecosystems Workshop: Freshwater Ecosystems In Changing Permafrost Landscapes. Quebec City, QC, 2014.
. “Buoyancy Flux, Turbulence, And The Gas Transfer Coefficient In A Stratified Lake”. Geophysical Research Letters 37, no. 24. Geophysical Research Letters (2010): L24604. doi:10.1029/2010gl044164.
. “Turbulence And Ghg Emissions In Lakes Across Latitudes: Implications For Biogeochemistry (Invited Speaker)”. Advancing The Science Of Gas Exchange Between Fresh Waters And The Atmosphere. Advancing The Science Of Gas Exchange Between Fresh Waters And The Atmosphere. Hyytiälä Field Station, Korkeakoski, Finland, 2014.
. “Climate Related Variations In Mixing Dynamics Of An Alaskan Arctic Lake”. Limnology And Oceanography 54. Limnology And Oceanography (2009): 2401-2417. doi:10.4319/lo.2009.54.6_part_2.2401.
. “Responses Of Root Phenology In Ecotypes Of Eriophorum Vaginatum To Transplantation And Warming In The Arctic”. Science Of The Total Environment 805. Science Of The Total Environment (2022): 149926. doi:10.1016/j.scitotenv.2021.149926.
. “Leaf And Root Phenology And Biomass Of Eriophorum Vaginatum In Response To Warming In The Arcticabstract”. Journal Of Plant Ecology 15, no. 5. Journal Of Plant Ecology (2022): 1091 - 1105. doi:10.1093/jpe/rtac010.
. “Dissolved Organic Matter Chemistry And Transport Along An Arctic Tundra Hillslope”. Global Biogeochemical Cycles 33. Global Biogeochemical Cycles (2019): 47-62. doi:10.1029/2018GB006030.
.