Bibliography
“Modeling Long‐Term Changes In Tundra Carbon Balance Following Wildfire, Climate Change, And Potential Nutrient Addition”. Ecological Applications 27. Ecological Applications (2017): 105–117. doi:10.1002/eap.1413.
. “Modeling Long-Term Changes In Tundra Carbon Balance Following Wildfire, Climate Change And Potential Nutrient Addition”. Ecological Applications 27, no. 1. Ecological Applications (2017): 105–117 . doi:10.1002/eap.1413.
. “Modeling Lakes And Reservoirs In The Climate System”. Limnology And Oceanography 54, no. 6-2. Limnology And Oceanography (2009): 2315-2329. doi:10.4319/lo.2009.54.6_part_2.2315.
. “Modeling For Understanding V. Modeling For Numbers”. Ecosystems 20. Ecosystems (2017): 215 - 221. doi:10.1007/s10021-016-0067-y.
. “Modeling Coupled Biogeochemical Cycles”. Frontiers In Ecology And The Environment 9, no. 1. Frontiers In Ecology And The Environment (2011): 68-73. doi:10.1890/090223.
. “Modeling Co2 Emissions From Arctic Lakes: Model Development And Site-Level Study”. Journal Of Advances In Modeling Earth Systems 9. Journal Of Advances In Modeling Earth Systems (2017). doi:10.1002/2017MS001028.
. “Modeling Carbon–Nutrient Interactions During The Early Recovery Of Tundra After Fire”. Ecological Applications 25, no. 6. Ecological Applications (2015): 1640 - 1652. doi:10.1890/14-1921.1.
. “Modeling Carbon Responses Of Tundra Ecosystems To Historical And Project Climate: A Comparison Of A Plot- And A Global-Scale Ecosystem Model To Identify Process-Based Uncertainties”. Global Change Biology 6, no. s1. Global Change Biology (2000): 127-140. doi:10.1046/j.1365-2486.2000.06009.x.
. “Modeling Biogeochemical Responses Of Tundra Ecosystems To Temporal And Spatial Variations In Climate In The Kuparuk River Basin (Alaska)”. Journal Of Geophysical Research: Atmospheres 108, no. D2. Journal Of Geophysical Research: Atmospheres (2003): 8165. doi:10.1029/2001JD000960.
. “Model Responses To Co2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32. Ecological Applications (2022). doi:10.1002/eap.2478.
. “Model Responses To Co 2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32, no. 1. Ecological Applications (2022). doi:10.1002/eap.v32.110.1002/eap.2478.
. “A Model Of Multiple-Element Limitation For Acclimating Vegetation”. Ecology 73, no. 4. Ecology (1992): 1157-1174. doi:10.2307/1940666.
. “Mismatch Of N Release From The Permafrost And Vegetative Uptake Opens Pathways Of Increasing Nitrous Oxide Emissions In The High Arctic”. Global Change Biology 28, no. 20. Global Change Biology (2022): 5973 - 5990. doi:10.1111/gcb.v28.20.
. “Mineralization Of Glucose And Lignocellulose By Four Arctic Freshwater Sediments In Response To Nutrient Enrichment”. Applied And Environmental Microbiology 58, no. 2. Applied And Environmental Microbiology (1992): 1554-1563. http://aem.asm.org/content/58/5/1554.full.pdf+html.
. “Mineralization And Distribution Of Nutrients By Plants And Microbes In Four Arctic Ecosystems: Responses To Warming”. Plant And Soil 242, no. 1. Plant And Soil (2002): 93-106. doi:10.1023/A:1019642007929.
. “Mineral Nutrition And Leaf Longevity In Ledum Palustre : The Role Of Individual Nutrients And The Timing Of Leaf Mortality”. Oecologia 56, no. 2-3. Oecologia (1983): 160-165. doi:10.1007/BF00379686.
. “Mineral Nutrition And Leaf Longevity In An Evergreen Shrub, Ledum Palustre Ssp. Decumbens”. Oecologia 49, no. 3. Oecologia (1981): 362-365. doi:10.1007/BF00347599.
. “Mineral Adsorption Effects On Permafrost Carbon”. Ecology And Evolutionary Biology. Ecology And Evolutionary Biology. University of Michigan, 2014.
. “Migration Of Metals In Sediment Pore Waters: Problems For The Interpretation Of Historical Deposition Rates”. Proceedings Of The 6Th International Conference On Heavy Metals In The Environment. Proceedings Of The 6Th International Conference On Heavy Metals In The Environment. New Orleans, 1987.
. “Microsite Conditions In Retrogressive Thaw Slumps May Facilitate Increased Seedling Recruitment In The Alaskan Low Arctic”. Ecology And Evolution 9. Ecology And Evolution (2019): 1880–1897. doi:10.1002/ece3.4882.
. “Microfaunal Response To Fertilization Of An Arctic Tundra River”. University of North Carolina, 1994.
. “A Microcalorimetric Investigation Of The Effect Of High Molecular Weight Organics On Epilithic Microbial Metabolism”. Archiv Fur Hydrobiologie Beiheft 31. Archiv Fur Hydrobiologie Beiheft (1988): 195-201.
. “A Micro-Bioassay For Epilithon Using Nutrient-Diffusing Artificial Substrata”. Journal Of Freshwater Ecology 5, no. 2. Journal Of Freshwater Ecology (1989): 171-176. doi:10.1080/02705060.1989.9665226.
. “Microbially Mediated Mn(Ii) Oxidation In An Oligotrophic Arctic Lake”. Applied And Environmental Microbiology 54. Applied And Environmental Microbiology (1988): 1440-1445. https://aem.asm.org/content/54/6/1440.
. “Microbially Mediated Mn (Ii) Oxidation In An Oligotrophic Arctic Lake”. University of Alaska, 1986.
.