Bibliography
“Functional- And Abundance-Based Mechanisms Explain Diversity Loss Due To N Fertilization”. Proceedings Of The National Academy Of Sciences 102, no. 12. Proceedings Of The National Academy Of Sciences (2005): 4387-4392. doi:10.1073/pnas.0408648102.
. “Functional Convergence In Regulation Of Net Co2 Flux In Heterogeneous Tundra Landscapes In Alaska And Sweden”. Journal Of Ecology 95, no. 4. Journal Of Ecology (2007): 802-817. doi:10.1111/j.1365-2745.2007.01259.x.
. “The Functional Response Of Drift-Feeding Arctic Grayling: The Effects Of Prey Density, Water Velocity, And Location Efficiency”. Canadian Journal Of Fisheries And Aquatic Sciences 58, no. 10. Canadian Journal Of Fisheries And Aquatic Sciences (2001): 1957-1963. doi:10.1139/f01-138.
. “A General Biogeochemical Model Describing The Responses Of The C And N Cycles In Terrestrial Ecosystems To Changes In Co2, Climate, And N Deposition”. Tree Physiology 9, no. 1-2. Tree Physiology (1991): 101-126. doi:10.1093/treephys/9.1-2.101.
. “General Features Of The Arctic Relevant To Climate Change In Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 330-338. doi:10.1579/0044-7447%282006%2935%5B330%3AGFOTAR%5D2.0.CO%3B2.
. “Generality Of Hydrologic Transport Limitation Of Watershed Organic Carbon Flux Across Ecoregions Of The United States”. Geophysical Research Letters 45. Geophysical Research Letters (2018): 11,702 - 11,711. doi:10.1029/2018GL080005.
. “Geochemical Influences On Solubility Of Soil Organic Carbon In Arctic Tundra Ecosystems”. Soil Science Society Of America Journal 77, no. 2. Soil Science Society Of America Journal (2013): 473-481. doi:10.2136/sssaj2012.0199.
. “Geochemistry Of Soils And Streams On Surfaces Of Varying Ages In Arctic Alaska”. Arctic, Antarctic And Alpine Research 39. Arctic, Antarctic And Alpine Research (2007): 84-98. doi:10.1657/1523-0430%282007%2939%5B84%3AGOSASO%5D2.0.CO%3B2.
. “The Geomorphic-Trophic Hypothesis For Arctic Lake Food Webs”. Vereinigung Verhandlungen International Limnologie 27. Vereinigung Verhandlungen International Limnologie (2000): 3269-3274. doi:10.1080/03680770.1998.11898286.
. “A Geomorphic-Trophic Model For Landscape Control Of Arctic Lake Food Webs”. Bioscience 49, no. 11. Bioscience (1999): 887-897. doi:10.2307/1313648.
. “Global Assessment Of Experimental Climate Warming On Tundra Vegetation: Heterogeneity Over Space And Time”. Ecology Letters 15, no. 2. Ecology Letters (2012): 164-175. doi:10.1111/j.1461-0248.2011.01716.x.
. “Global Change And Arctic Ecosystems: Is Lichen Decline A Function Of Increases In Vascular Plant Biomass?”. Journal Of Ecology 89. Journal Of Ecology (2001): 984-994. doi:10.1111/j.1365-2745.2001.00625.x.
. “Global Change And The Carbon Balance Of Arctic Ecosystems”. Bioscience 42, no. 6. Bioscience (1992): 433-441. doi:10.2307/1311862.
. “Global Change And The Importance Of Fire For The Ecology And Evolution Of Insects”. Current Opinion In Insect Science 29. Current Opinion In Insect Science (2018): 110 - 116. doi:10.1016/j.cois.2018.07.015.
. “Global Change Effects On Plant Communities Are Magnified By Time And The Number Of Global Change Factors Imposed”. Proceedings Of The National Academy Of Sciences 116, no. 36. Proceedings Of The National Academy Of Sciences (2019): 17867 - 17873. doi:10.1073/pnas.1819027116.
. “Global Data Set Of Long-Term Summertime Vertical Temperature Profiles In 153 Lakes”. Scientific Data 8. Scientific Data (2021): 200. doi:10.1038/s41597-021-00983-y.
. “Global Environmental Change And The Nature Of Aboveground Net Primary Productivity Responses: Insights From Long-Term Experiments”. Oecologia 177, no. 4. Oecologia (2015): 935-947. doi:10.1007/s00442-015-3230-9.
. “Global Negative Vegetation Feedback To Climate Warming Responses Of Leaf Litter Decomposition Rates In Cold Biomes”. Ecology Letters 10, no. 7. Ecology Letters (2007): 619-627. doi:10.1111/j.1461-0248.2007.01051.x.
. “Global Variability In Leaf Respiration In Relation To Climate, Plant Functional Types And Leaf Traits”. New Phytologist 206, no. 2. New Phytologist (2015): 614 - 636. doi:10.1111/nph.13253.
. “Global Warming And Terrestrial Ecosystems: A Conceptual Framework For Analysis”. Bioscience 50, no. 10. Bioscience (2000): 871-882. doi:10.1641/0006-3568(2000)050%5B0871:GWATEA%5D2.0.CO;2.
. “Global Warming Impacts On Lake Trout In Arctic Lakes”. Limnology And Oceanography 41, no. 5. Limnology And Oceanography (1996): 1102-1108. doi:10.4319/lo.1996.41.5.1102.
. “A Gradient Of Nutrient Enrichment Reveals Nonlinear Impacts Of Fertilization On Arctic Plant Diversity And Ecosystem Function”. Ecology And Evolution 7, no. 7. Ecology And Evolution (2017): 2449 - 2460. doi:10.1002/ece3.2863.
. “Grazing And Nutrient Interactions In Controlling The Activity And Composition Of The Epilithic Algal Community Of An Arctic Lake”. Limnology And Oceanography 28, no. 1. Limnology And Oceanography (1983): 133-141. doi:10.4319/lo.1983.28.1.0133.
. “Greater Deciduous Shrub Abundance Extends Tundra Peak Season And Increases Modeled Net Co2 Uptake”. Global Change Biology 21, no. 6. Global Change Biology (2015): 2394-2409. doi:10.1111/gcb.12852.
. “Greater Shrub Dominance Alters Breeding Habitat And Food Resources For Migratory Songbirds In Alaskan Arctic Tundra”. Global Change Biology 21, no. 4. Global Change Biology (2015): 1508-1520. doi:10.1111/gcb.12761.
.