Bibliography
“Hourly And Daily Models Of Active Layer Evolution In Arctic Soils”. Ecological Modelling 206, no. 1-2. Ecological Modelling (2007): 131-146. doi:10.1016/j.ecolmodel.2007.03.030.
. “Imaging Thermal Stratigraphy In Freshwater Lakes Using Georadar”. Geophysical Research Letters 34, no. 24. Geophysical Research Letters (2007): L24405. doi:10.1029/2007gl032488.
. “Plant-Herbivore Interactions In Alaskan Arctic Tundra Change With Soil Nutrient Availability”. Oikos 116, no. 3. Oikos (2007): 407-418. doi:10.1111/j.0030-1299.2007.15449.x.
. “Recent Changes In Nitrate And Dissolved Organic Carbon Export From The Upper Kuparuk River, North Slope, Alaska”. Journal Of Geophysical Research: Biogeosciences 112, no. G4. Journal Of Geophysical Research: Biogeosciences (2007): G04S60. doi:10.1029/2006JG000371.
. “Recovery Of Three Arctic Stream Reaches From Experimental Nutrient Enrichment”. Freshwater Biology 52, no. 6. Freshwater Biology (2007): 1077-1089. doi:10.1111/j.1365-2427.2007.01723.x.
. “Stream Insect Occupancy-Frequency Patterns And Metapopulation Structure”. Oecologia 151, no. 2. Oecologia (2007): 313-321. doi:10.1007/s00442-006-0596-8.
. “Transient Storage As A Function Of Geomorphology, Discharge, And Permafrost Active Layer Conditions In Arctic Tundra Streams”. Water Resources Research 43, no. 7. Water Resources Research (2007): WR004816. doi:10.1029/2005WR004816.
. “Using Sound Pressure To Estimate Reaeration In Streams”. Journal Of The North American Benthological Society 26, no. 1. Journal Of The North American Benthological Society (2007): 28-37. doi:10.1899/0887-3593(2007)26%5B28:USPTER%5D2.0.CO;2.
. “Vertical And Temporal Distribution Of Two Copepod Species, Cyclops Scutifer And Diaptomus Pribilofensis, In 24 H Arctic Daylight”. Journal Of Plankton Research 29, no. 3. Journal Of Plankton Research (2007): 275-289. doi:10.1093/plankt/fbm014.
. “What Is The Relationship Between Changes In Canopy Leaf Area And Changes In Photosynthetic Co2 Flux In Arctic Ecosystems?”. Journal Of Ecology 95, no. 1. Journal Of Ecology (2007): 139-150. doi:10.1111/j.1365-2745.2006.01187.x.
. “Biogeochemical Cycling Of Methylmercury In Lakes And Tundra Watersheds Of Arctic Alaska”. Environmental Science And Technology 40, no. 4. Environmental Science And Technology (2006): 1204-1211. doi:10.1021/es051322b.
. “Carbon Turnover In Alaskan Tundra Soils: Effects Of Organic Matter Quality, Temperature, Moisture And Fertilizer”. Journal Of Ecology 94, no. 4. Journal Of Ecology (2006): 740-753. doi:10.1111/j.1365-2745.2006.01139.x.
. “Climate Change Effects On Aquatic Biota, Ecosystem Structure And Function”. Ambio 35, no. 7. Ambio (2006): 359-369. doi:10.1579/0044-7447%282006%2935%5B359%3ACCEOAB%5D2.0.CO%3B2.
. “Climate Change Effects On Hydroecology Of Arctic Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 347-358. doi:10.1579/0044-7447%282006%2935%5B347%3ACCEOHO%5D2.0.CO%3B2.
. “Climate Impacts On Arctic Freshwater Ecosystems And Fisheries: Background, Rationale And Approach Of The Arctic Climate Impact Assessment (Acia)”. Ambio 35, no. 7. Ambio (2006): 326-329. doi:10.1579/0044-7447%282006%2935%5B326%3ACIOAFE%5D2.0.CO%3B2.
. “Effects Of Ultraviolet Radiation And Contaminant-Related Stressors On Arctic Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 388-401. doi:10.1579%2F0044-7447(2006)35%5B388%3AEOURAC%5D2.0.CO%3B2.
. “Food Web Structure And Function In Two Arctic Streams With Contrasting Disturbance Regimes”. Freshwater Biology 51, no. 7. Freshwater Biology (2006): 1249-1263. doi:10.1111/j.1365-2427.2006.01567.x.
. “From Lilliput To Brobdingnag: Extending Models Of Mycorrhizal Function Across Scales”. Bioscience 56, no. 11. Bioscience (2006): 889-900. doi:10.1641/0006-3568%282006%2956%5B889%3AFLTBEM%5D2.0.CO%3B2.
. “General Features Of The Arctic Relevant To Climate Change In Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 330-338. doi:10.1579/0044-7447%282006%2935%5B330%3AGFOTAR%5D2.0.CO%3B2.
. “Historical Changes In Arctic Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 339-346. doi:10.1579/0044-7447%282006%2935%5B339%3AHCIAFE%5D2.0.CO%3B2.
. “Identifying Differences In Carbon Exchange Among Arctic Ecosystem Types”. Ecosystems 9, no. 2. Ecosystems (2006): 288-304. doi:10.1007/s10021-005-0146-y.
. “Increased Ectomycorrhizal Fungal Abundance After Long-Term Fertilization And Warming Of Two Arctic Tundra Ecosystems”. New Phytologist 171, no. 2. New Phytologist (2006): 391-404. doi:10.1111/j.1469-8137.2006.01778.x.
. “Key Findings, Science Gaps And Policy Recommendations”. Ambio 35, no. 7. Ambio (2006): 411-415. doi:10.1579/0044-7447%282006%2935%5B411%3AKFSGAP%5D2.0.CO%3B2.
. “Microbial Community Composition And Function Across An Arctic Tundra Landscape”. Ecology 87. Ecology (2006): 1659-1670. doi:10.1890/0012-9658%282006%2987%5B1659%3AMCCAFA%5D2.0.CO%3B2.
. “N-15 In Symbiotic Fungi And Plants Estimates Nitrogen And Carbon Flux Rates In Arctic Tundra”. Ecology 87, no. 4. Ecology (2006): 816-822. doi:10.1890/0012-9658(2006)87%5B816:Nisfap%5D2.0.Co;2.
.