Bibliography
“Elemental Dynamics In Streams”. Journal Of The North American Benthological Society 7, no. 4. Journal Of The North American Benthological Society (1988): 410-432. doi:10.2307/1467299.
. “Salmonid Diet And The Size, Distribution, And Density Of Benthic Invertebrates In An Arctic Lake”. Hydrobiologia 240. Hydrobiologia (1992): 225-234. doi:10.1007/BF00013464.
. “Lake Trout (Salvelinus Namaycush) Control Of Snail Density And Size Distribution In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 48. Canadian Journal Of Fisheries And Aquatic Sciences (1991): 498-502. doi:10.1139/f91-064.
. “Lake Trout (Salvelinus Namaycush) And Benthic Community Ecology In An Arctic Ecosystem”. University of Minnesota, 1989.
. “Modelling In-Pool Temperature Variability In A Beaded Arctic Stream”. Hydrological Processes 26, no. 25. Hydrological Processes (2012): 3921-3933. doi:10.1002/hyp.8419.
. “Variability Of Sater Storage And Instream Temperature In Beaded Arctic Streams”. Civil And Environmental Engineering. Civil And Environmental Engineering. Utah State University, 2011.
. “Variability Of In-Stream And Riparian Storage In A Beaded Arctic Stream”. Hydrological Processes 26, no. 19. Hydrological Processes (2012): 2938-2950. doi:10.1002/hyp.8323.
. “Plant Community Responses Of The Alaskan Arctic Tundra To Environmental And Experimental Changes In Climate”. University of Puerto Rico, 2011.
. “Improving Biogeochemical Knowledge Through Technological Innovation”. Frontiers In Ecology And The Environment 9, no. 1. Frontiers In Ecology And The Environment (2011): 37-43. doi:10.1890/100004.
. “Variations Of Tardigrade Assemblages In Dust-Impacted Arctic Mosses”. Arctic And Alpine Research 20, no. 1. Arctic And Alpine Research (1988): 24-30. doi:10.2307/1551695.
. “Sources And Partitioning Of Organic Matter In A Pelagic Microbial Food Web Inferred From The Isotopic Composition (Del 13C And Del 15N) Of Zooplankton Species”. Archiv Fur Hydrobiologie Beiheft 48. Archiv Fur Hydrobiologie Beiheft (1996): 53-61. http://www.schweizerbart.de//publications/detail/isbn/9783510470495/Archiv\_Advances\_i\_Limnol\_Heft\_48.
. “Long‐Term Hydrological, Biogeochemical, And Ecological Data For The Kuparuk River, North Slope, Alaska”. Hydrological Processes 35. Hydrological Processes (2021). doi:10.1002/hyp.14115.
. “Hydrologic And Biogeochemical Controls On The Spatial And Temporal Patterns Of Nitrogen And Phosphorus In The Kuparuk River, Arctic Alaska”. Hydrological Processes 22, no. 17. Hydrological Processes (2008): 3294–3309. doi:10.1002/hyp.6920.
. “Hydrological Field Data From A Modeller's Perspective: Part 1. Diagnostic Tests For Model Structure”. Hydrological Processes 25, no. 4. Hydrological Processes (2011): 511-522. doi:10.1002/hyp.7841.
. “Hydrological Field Data From A Modeller’s Perspective: Part 1. Diagnostic Tests For Model Structure”. Hydrological Processes 25. Hydrological Processes (2011): 511–522. doi:10.1002/hyp.7841.
. “A Cross-Seasonal Comparison Of Active And Total Bacterial Community Composition In Arctic Tundra Soil Using Bromodeoxyuridine Labeling”. Soil Biology And Biochemistry 43, no. 2. Soil Biology And Biochemistry (2011): 287-295. doi:10.1016/j.soilbio.2010.10.013.
. “Predicting Ecosystem Carbon Balance In A Warming Arctic: The Importance Of Long-Term Thermal Acclimation Potential And Inhibitory Effects Of Light On Respiration”. Global Change Biology 20. Global Change Biology (2014): 1901–1912. doi:10.1111/gcb.12549.
. “Reconstructing Disturbances And Their Biogeochemical Consequences Over Multiple Timescales”. Bioscience 64, no. 2. Bioscience (2014): 105-116. doi:10.1093/biosci/bit017.
. “Shrub Encroachment In Arctic Tundra: \Textit{Betula Nana Effects On Above‐ And Belowground Litter Decomposition”. Ecology 98. Ecology (2017): 1361–1376. doi:10.1002/ecy.1790.
. “Seasonal Patterns Of Soil Nitrogen Availability In Moist Acidic Tundra”. Arctic Science. Arctic Science (2017): AS–2017–0014. doi:10.1139/as-2017-0014.
. “Seasonal Patterns Of Soil Nitrogen Availability In Moist Acidic Tundra”. Arctic Science 4, no. 1. Arctic Science (2018): 98-109. doi:10.1139/as-2017-0014.
. “Enhanced Plant Leaf P And Unchanged Soil P Stocks After A Quarter Century Of Warming In The Arctic Tundra”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3838.
. “Effects Of Increasing Shrub Abundance On Litter Production And Decomposition In Arctic Tundra”. Ecological Society Of America, Annual Meeting. Ecological Society Of America, Annual Meeting. Sacramento, CA, 2014.
. “Shrub Encroachment In Arctic Tundra: Betula Nana Effects On Above- And Belowground Litter Decomposition”. Ecology 98, no. 5. Ecology (2017): 1361 - 1376. doi:10.1002/ecy.1790.
. “Decoupled Above‐ And Belowground Responses To Multi‐Decadal Nitrogen And Phosphorus Amendments In Two Tundra Ecosystems”. Ecosphere 10, no. 7. Ecosphere (2019). doi:10.1002/ecs2.2735.
.