Bibliography
“Tundra Wildfire Triggers Sustained Lateral Nutrient Loss In Alaskan Arctic”. Global Change Biology. Global Change Biology (2021). doi:https://doi.org/10.1111/gcb.15507.
. “Tundra Plants Compete Effectively With Soil Microbes For Amino-Acid Nitrogen”. Ecology 77. Ecology (1996): 2142–2147. doi:10.2307/2265708.
. “Tundra Avian Community Composition During Recovery From The Anaktuvuk River Fire”. International Journal Of Wildland Fire 27. International Journal Of Wildland Fire (2018): 69. doi:10.1071/wf17159.
. “Trophic Structure Of Apex Fish Communities In Closed Versus Leaky Lakes Of Arctic Alaska”. Oecologia 194, no. 3. Oecologia (2020): 491 - 504. doi:10.1007/s00442-020-04776-9.
. “The Trophic Significance Of Epilithic Algal Production In A Fertilized Tundra River Ecosystem”. Limnology And Oceanography 38, no. 4. Limnology And Oceanography (1993): 872-878. doi:10.4319/lo.1993.38.4.0872.
. “The Trophic Interactions Of Young Arctic Grayling (Thymallus Arcticus) In An Arctic Tundra Stream”. Freshwater Biology 39, no. 4. Freshwater Biology (1998): 637-648. doi:10.1046/j.1365-2427.1998.00314.x.
. “Transient Storage As A Function Of Geomorphology, Discharge, And Permafrost Active Layer Conditions In Arctic Tundra Streams”. Water Resources Research 43, no. 7. Water Resources Research (2007): WR004816. doi:10.1029/2005WR004816.
. “Transformation Of A Tundra River From Heterotrophy To Autotrophy By Addition Of Phosphorus”. Science 229, no. 4720. Science (1985): 1383-1386. doi:10.1126/science.229.4720.1383.
. “Trajectory Shifts In The Arctic And Subarctic Freshwater Cycle”. Science 313, no. 5790. Science (2006): 1061-1066. doi:10.1126/science.1122593.
. “Trajectory Of The Arctic As An Integrated System”. Ecological Applications 23, no. 8. Ecological Applications (2013): 1743-1744. doi:10.1890/11-1498.1.
. “Tracking The Fate Of Fresh Carbon In The Arctic Tundra: Will Shrub Expansion Alter Responses Of Soil Organic Matter To Warming?”. Soil Biology And Biochemistry 120. Soil Biology And Biochemistry (2018): 134 - 144. doi:10.1016/j.soilbio.2018.02.002.
. “Tracking Carbon Within The Trees”. New Phytologist 197, no. 3. New Phytologist (2013): 685-686. doi:10.1111/nph.12095.
. “A Tracer Investigation Of Nitrogen Cycling In A Pristine Tundra River”. Canadian Journal Of Fisheries And Aquatic Sciences 54, no. 10. Canadian Journal Of Fisheries And Aquatic Sciences (1997): 2361-2367. doi:10.1139/f97-142.
. “Top-Down Is Bottom-Up: Does Predation In The Rhizosphere Regulate Aboveground Production?”. Ecology 84. Ecology (2003): 84-857. doi:10.1890/0012-9658(2003)084%5B0846:TIBDPI%5D2.0.CO;2.
. “Time Lags: Insights From The U.s. Long Term Ecological Research Network”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3431.
. “Tiller Population Dynamics Of Reciprocally Transplanted \Textit{Eriophorum Vaginatum L. Ecotypes In A Changing Climate”. Population Ecology 57. Population Ecology (2015): 117–126. doi:10.1007/s10144-014-0459-9.
. “Tiller Population Dynamics Of Reciprocally Transplanted Eriophorum Vaginatum L. Ecotypes In A Changing Climate”. Population Ecology 57, no. 1. Population Ecology (2015): 117-126. doi:10.1007/s10144-014-0459-9.
. “Tight Coupling Between Leaf Area Index And Foliage N Content In Arctic Plant Communities”. Oecologia 142, no. 3. Oecologia (2005): 421-427. doi:10.1007/s00442-004-1733-x.
. “Thermal Modeling Of Three Lakes Within The Continuous Permafrost Zone In Alaska Using The Lake 2.0 Model”. Geoscientific Model Development 15, no. 19. Geoscientific Model Development (2022): 7421 - 7448. doi:10.5194/gmd-15-7421-2022.
. “Thermal Acclimation Of Shoot Respiration In An Arctic Woody Plant Species Subjected To 22 Years Of Warming And Altered Nutrient Supply”. Global Change Biology 20, no. 8. Global Change Biology (2014): 2618-2630. doi:10.1111/gcb.12544.
. “A Test Of Functional Convergence In Carbon Fluxes From Coupled C And N Cycles In Arctic Tundra”. Ecological Modelling 383. Ecological Modelling (2018): 31 - 40. doi:10.1016/j.ecolmodel.2018.05.017.
. “Terrestrial C Sequestration At Elevated-Co2 And Temperature: The Role Of Dissolved Organic N Loss”. Ecological Applications 15, no. 1. Ecological Applications (2005): 71-86. doi:10.1890/03-5303.
. “Terrain, Vegetation And Landscape Evolution Of The R4D Research Site, Brooks Range Foothills, Alaska”. Holarctic Ecology 12. Holarctic Ecology (1989): 238–261. http://www.jstor.org/stable/3682732.
. “Temperature Controls On Aquatic Bacterial Production And Community Dynamics In Arctic Lakes And Streams”. Environmental Microbiology 12, no. 5. Environmental Microbiology (2010): 1319–1333. doi:10.1111/j.1462-2920.2010.02176.x.
. “Temperature Calibration And Phylogenetically Distinct Distributions For Freshwater Alkenones: Evidence From Northern Alaskan Lakes.”. Geocosmochima Cosmochima Acta 180. Geocosmochima Cosmochima Acta (2016): 177-196. doi:10.1016/j.gca.2016.02.019.
.