Bibliography
“Bioavailability Of Dissolved Organic Carbon Across A Hillslope Chronosequence In The Kuparuk River Region, Alaska”. Soil Biology And Biochemistry 79. Soil Biology And Biochemistry (2014): 25-33. doi:10.1016/j.soilbio.2014.08.020.
. “Effects Of Ph And Calcium On Soil Organic Matter Dynamics In Alaskan Tundra”. Biogeochemistry 111, no. 1-3. Biogeochemistry (2012): 569-581. doi:10.1007/s10533-011-9688-6.
. “Effect Of Topography And Glaciation History On The Movement Of Carbon And Nitrogen Within Arctic Hillsides”. Department Of Ecology, Evolution, And Behavior. Department Of Ecology, Evolution, And Behavior. University of Minnesota, 2010. http://conservancy.umn.edu/bitstream/handle/11299/98103/Whittinghill_umn_0130E_10990.pdf?sequence=1.
. “Intercomparison, Interpretation, And Assessment Of Spring Phenology In North America Estimated From Remote Sensing For 1982-2006”. Global Change Biology 15. Global Change Biology (2009): 2335–2359. doi:10.1111/j.1365-2486.2009.01910.x.
. “The Arctic Freshwater System: Changes And Impacts”. Journal Of Geophysical Research: Biogeosciences 112, no. G4. Journal Of Geophysical Research: Biogeosciences (2007): G04S54. doi:10.1029/2006JG000353.
. “Factors Affecting Black Fly Abundance And Distribution In An Arctic Stream”. University of Minnesota, 1994.
. “Chemical Influences On 14C And 15C Primary Production In An Arctic Lake”. Polar Biology 5. Polar Biology (1986): 211-219. doi:10.1007/BF00446089.
. “Influence Of Temperature And Light On Rates Of Inorganic Nitrogen Transport By Algae In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 41, no. 9. Canadian Journal Of Fisheries And Aquatic Sciences (1984): 1310-1318. doi:10.1139/f84-160.
. “Comparison Of Chemical And Biological N Budgets In An Arctic Lake: Implications For Phytoplankton Productivity”. In Mitt. Geol. Paleont. Inst. Univ. Hamburg. Scope/Unep Sonderbd, 99-115. Mitt. Geol. Paleont. Inst. Univ. Hamburg. Scope/Unep Sonderbd, 1988.
. “Diel Variations In Inorganic Carbon And Nitrogen Uptake By Phytoplankton In An Arctic Lake”. Journal Of Plankton Research 6, no. 4. Journal Of Plankton Research (1984): 571-590. doi:10.1093/plankt/6.4.571.
. “Nitrogen, Phosphorus And Organic Carbon Cycling In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 42. Canadian Journal Of Fisheries And Aquatic Sciences (1985): 797-808. doi:10.1139/f85-102.
. “Pelagic Nitrogen Cycles In An Arctic Lake”. University of Alaska, 1986.
. “Chemical Influences On 14C And 15N Primary Production In An Arctic Lake”. Polar Biology 5. Polar Biology (1986): 211–219. doi:10.1007/BF00446089.
. “Seasonal Inorganic Carbon And Nitrogen Transport By Phytoplankton In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 43. Canadian Journal Of Fisheries And Aquatic Sciences (1986): 1177-1186.
. “Nitrogen, Phosphorus, And Organic Carbon Cycling In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 42. Canadian Journal Of Fisheries And Aquatic Sciences (1985): 797–808. doi:10.1139/f85-102.
. “The Contribution And Environmental Control Of Nitrogen Fixation By Lichens In Upland Arctic Tundra”. University of Minnesota, 2003.
. “Contrasting Responses Of Nitrogen-Fixation In Arctic Lichens To Experimental And Ambient Nitrogen And Phosphorus Availability”. Arctic, Antarctic And Alpine Research 37, no. 3. Arctic, Antarctic And Alpine Research (2005): 396-401. doi:10.1657/1523-0430%282005%29037%5B0396%3ACRONIA%5D2.0.CO%3B2.
. “Factors Affecting Ammonium Uptake In Streams – An Inter-Biome Perspective”. Freshwater Biology 48, no. 8. Freshwater Biology (2003): 1329-1352. doi:10.1046/j.1365-2427.2003.01094.x.
. “Assessing The Prevalence, Products, And Pathways Of Dissolved Organic Matter Partial Photo-Oxidation In Arctic Surface Waters”. Environmental Science: Processes & Impacts 22. Environmental Science: Processes & Impacts (2020): 1214–1223. doi:10.1039/C9EM00504H.
. “Photochemical Alteration Of Organic Carbon Draining Permafrost Soils Shifts Microbial Metabolic Pathways And Stimulates Respiration”. Nature Communications 8. Nature Communications (2017): 772. doi:10.1038/s41467-017-00759-2.
. “Photochemical Degradation Of Dissolved Organic Matter In Arctic Surface Waters”. Earth And Environmental Sciences. Earth And Environmental Sciences. University of Michigan, 2015. http://hdl.handle.net/2027.42/113534.
. “Insights Into The Complete And Partial Photooxidation Of Black Carbon In Surface Waters”. Environmental Science Process Impacts 16, no. 4. Environmental Science Process Impacts (2014): 721-731. doi:10.1039/c3em00597f.
. “An Inverse Ecosystem Model Of Year-To-Year Variations With First Order Approximation To The Annual Mean Fluxes”. Ecological Modelling 187, no. 4. Ecological Modelling (2005): 369-388. doi:10.1016/j.ecolmodel.2005.02.003.
. “An Inverse Ecosystem Model Of Year-To-Year Variations With First Order Approximation To The Annual Mean Fluxes.”. Ecological Modeling 187. Ecological Modeling (2005): 369–388. doi:10.1016/j.ecolmodel.2005.02.003.
. “Study Of The Inter-Annual Food Web Dynamics In The Kuparuk River With A First Order Approximation Inverse Model”. Ecological Modelling 211, no. 1-2. Ecological Modelling (2008): 97-112. doi:10.1016/j.ecolmodel.2007.08.022.
.