Bibliography
“Heterocope, An Important Predator Structuring Arctic Pond Zooplankton Communities: A Mesocosm Study”. Vereinigung Verhandlungen International Limnologie 27. Vereinigung Verhandlungen International Limnologie (2001): 3686-3689. doi:10.1080/03680770.1998.11902517.
. “Hierarchical Subdivision Of Arctic Tundra Based On Vegetation Response To Climate, Parent Material And Topography”. Global Change Biology 6, no. S1. Global Change Biology (2000): 19-34. doi:10.1046/j.1365-2486.2000.06010.x.
. “High Leaf Respiration Rates May Limit The Success Of White Spruce Saplings Growing In The Kampfzone At The Arctic Treeline”. Frontiers In Plant Science 12. Frontiers In Plant Science (2021): 746464. doi:10.3389/fpls.2021.746464.
. “Higher Predation Risk For Insect Prey At Low Latitudes And Elevations”. Science 356, no. 6339. Science (2017): 742 - 744. doi:10.1126/science.aaj1631.
. “High-Resolution Mapping Of Aboveground Shrub Biomass In Arctic Tundra Using Airborne Lidar And Imagery”. Remote Sensing Of Environment 184. Remote Sensing Of Environment (2016): 361 - 373. doi:10.1016/j.rse.2016.07.026.
. “Hill Slope Variations In Chlorophyll Fluorescence Indices And Leaf Traits In A Small Arctic Watershed”. Arctic, Antarctic And Alpine Research 45, no. 1. Arctic, Antarctic And Alpine Research (2013): 39-49. doi:10.1657/1938-4246-45.1.39.
. “Historical Changes In Arctic Freshwater Ecosystems”. Ambio 35, no. 7. Ambio (2006): 339-346. doi:10.1579/0044-7447%282006%2935%5B339%3AHCIAFE%5D2.0.CO%3B2.
. “Holocene Pollen Records From The Central Arctic Foothills, Northern Alaska: Testing The Role Of Substrate In The Response Of Tundra To Climate Change”. Journal Of Ecology 91. Journal Of Ecology (2003): 1034-1048. doi:10.1046/j.1365-2745.2003.00833.x.
. “Home Site Advantage In Two Long-Lived Arctic Plant Species: Results From Two 30-Year Reciprocal Transplant Studies”. Journal Of Ecology 100, no. 4. Journal Of Ecology (2012): 841-851. doi:10.1111/j.1365-2745.2012.01984.x.
. “Host Identity As A Driver Of Moss-Associated N2 Fixation Rates In Alaska”. Ecosystems 24. Ecosystems (2021): 530–547. doi:10.1007/s10021-020-00534-3.
. “Hourly And Daily Models Of Active Layer Evolution In Arctic Soils”. Ecological Modelling 206, no. 1-2. Ecological Modelling (2007): 131-146. doi:10.1016/j.ecolmodel.2007.03.030.
. “How Long Do Population Level Field Experiments Need To Be? Utilising Data From The 40‐Year‐Old Lter Network”. Ecology Letters 24. Ecology Letters (2021): 1103–1111. doi:10.1111/ele.13710.
. “The Hydraulic Characteristics And Geochemistry Of Hyporheic And Parafluvial Zones In Arctic Tundra Streams, North Slope, Alaska”. Advances In Water Resources 26. Advances In Water Resources (2003): 907-923. doi:10.1016/S0309-1708(03)00078-2.
. “Hydrogen Isotope Fractionation In Leaf Waxes In The Alaskan Arctic Tundra”. Geochimica Et Cosmochimica Acta 213. Geochimica Et Cosmochimica Acta (2017): 216 - 236. doi:10.1016/j.gca.2017.06.028.
. “Hydrologic And Biogeochemical Controls On The Spatial And Temporal Patterns Of Nitrogen And Phosphorus In The Kuparuk River, Arctic Alaska”. Hydrological Processes 22, no. 17. Hydrological Processes (2008): 3294–3309. doi:10.1002/hyp.6920.
. “Hydrologic Modeling Of An Arctic Watershed: Towards Pan-Arctic Predictions”. Journal Of Geophysical Research: Atmospheres 104, no. D22. Journal Of Geophysical Research: Atmospheres (1999): 27507-27518. doi:10.1029/1999JD900845.
. “Hydrological Field Data From A Modeller’s Perspective: Part 1. Diagnostic Tests For Model Structure”. Hydrological Processes 25. Hydrological Processes (2011): 511–522. doi:10.1002/hyp.7841.
. “Hydrological Field Data From A Modeller's Perspective: Part 1. Diagnostic Tests For Model Structure”. Hydrological Processes 25, no. 4. Hydrological Processes (2011): 511-522. doi:10.1002/hyp.7841.
. “Hyporheic Exchange And Water Chemistry Of Two Arctic Tundra Streams Of Contrasting Geomorphology”. Journal Of Geophysical Research: Biogeosciences 113, no. G02029. Journal Of Geophysical Research: Biogeosciences (2008): 14pp. doi:10.1029/2007jg000549.
. “Identification Of Unrecognized Tundra Fire Events On The North Slope Of Alaska”. Journal Of Geophysical Research: Biogeosciences 118. Journal Of Geophysical Research: Biogeosciences (2013): 1334-1344. doi:10.1002/jgrg.20113.
. “Identifying Differences In Carbon Exchange Among Arctic Ecosystem Types”. Ecosystems 9, no. 2. Ecosystems (2006): 288-304. doi:10.1007/s10021-005-0146-y.
. “Imaging Thermal Stratigraphy In Freshwater Lakes Using Georadar”. Geophysical Research Letters 34, no. 24. Geophysical Research Letters (2007): L24405. doi:10.1029/2007gl032488.
. “The Impact Of Detailed Snow Physics On The Simulation Of Snow Cover And Subsurface Thermodynamics At Continental Scales”. Journal Of Hydrometeorology 2, no. 3. Journal Of Hydrometeorology (2001): 228-242. doi:10.1175/1525-7541(2001)002<0228%3ATIODSP>2.0.CO%3B2.
. “Impact Of Global Change On Biogeochemistry And Ecology Of An Arctic Freshwater System”. Polar Research 18, no. 2. Polar Research (1999): 207-214. doi:10.1111/j.1751-8369.1999.tb00295.x.
. “Impacts Of Female Body Size On Cannibalism And Juvenile Abundance In A Dominant Arctic Spider”. Journal Of Animal Ecology 89, no. 8. Journal Of Animal Ecology (2020): 1788 - 1798. doi:10.1111/jane.v89.810.1111/1365-2656.13230.
.