Bibliography
“The Abiotic And Biotic Controls Of Arctic Lakefood Webs: A Multifaceted Approach To Quantifying Trophic Structure And Function”. Watershed Sciences. Watershed Sciences. Utah State University, 2018. https://digitalcommons.usu.edu/etd/7293.
. “In Hot(Ter) Water: Predictions Of Arctic Char Growth And Consumption Under Climate Change Scenarios On The Alaska North Slope”. Western Division Of The American Fisheries Society. Western Division Of The American Fisheries Society. Mazatlan, MX, 2014.
. “A Changing Menu In A Changing Climate: Using Experimental And Long-Term Data To Predict Invertebrate Prey Biomass And Availability In Lakes Of Arctic Alaska”. Freshwater Biology 63. Freshwater Biology (2018): 1352-1364. doi:10.1111/fwb.13162.
. “Investigating The Morphological And Genetic Divergence Of Arctic Char ( \Textit{Salvelinus Alpinus) Populations In Lakes Of Arctic Alaska”. Ecology And Evolution 11. Ecology And Evolution (2021): 3040–3057. doi:10.1002/ece3.7211.
. “At The Forefront: Evidence Of The Applicability Of Using Environmental Dna To Quantify The Abundance Of Fish Populations In Natural Lentic Waters With Additional Sampling Considerations”. Canadian Journal Of Fisheries And Aquatic Sciences. Canadian Journal Of Fisheries And Aquatic Sciences (2017): 1 - 5. doi:10.1139/cjfas-2017-0114.
. “Alleviation Of Nutrient Co‐Limitation Induces Regime Shifts In Post‐Fire Community Composition And Productivity In Arctic Tundra”. Global Change Biology. Global Change Biology (2021). doi:10.1111/gcb.15646.
. “Variation Among Biomes In Temporal Dynamics Of Aboveground Primary Production”. Science 291. Science (2001): 481-484. doi:10.1126/science.291.5503.481.
. “Shrub Encroachment In North American Grasslands: Shifts In Growth Form Dominance Rapidly Alters Control Of Ecosystem Carbon Inputs”. Global Change Biology 14. Global Change Biology (2008): 615–623. doi:10.1111/j.1365-2486.2007.01512.x.
. “Shrub Encroachment In North American Grasslands: Shift In Growth Form Dominance Rapidly Alters Control Of Ecosystem C Inputs”. Global Change Biology 14, no. 3. Global Change Biology (2008): 615-623. doi:10.1111/j.1365-2486.2007.01512.x.
. “Past, Present, And Future Roles Of Long-Term Experiments In The Lter Network”. Bioscience 62, no. 4. Bioscience (2012): 377-389. doi:10.1525/bio.2012.62.4.9.
. “Warming Reverses Top-Down Effects Of Predators On Belowground Ecosystem Function In Arctic Tundra”. Proceedings Of The National Academy Of Sciences. Proceedings Of The National Academy Of Sciences (2018): 201808754. doi:10.1073/pnas.1808754115.
. “Herbivores In Arctic Ecosystems: Effects Of Climate Change And Implications For Carbon And Nutrient Cycling”. Annals Of The New York Academy Of Sciences 1516, no. 1. Annals Of The New York Academy Of Sciences (2022): 28 - 47. doi:10.1111/nyas.14863.
. “Warming Alters Cascading Effects Of A Dominant Arthropod Predator On Fungal Community Composition In The Arctic”. Mbio. Mbio (2024): e00590–24. doi:10.1128/mbio.00590-24.
. “The Detritus-Based Microbial-Invertebrate Food Web Contributes Disproportionately To Carbon And Nitrogen Cycling In The Arctic”. Polar Biology. Polar Biology (2017). doi:10.1007/s00300-017-2201-5.
. “Global Change And The Importance Of Fire For The Ecology And Evolution Of Insects”. Current Opinion In Insect Science 29. Current Opinion In Insect Science (2018): 110 - 116. doi:10.1016/j.cois.2018.07.015.
. “The Detritus-Based Microbial-Invertebrate Food Web Contributes Disproportionately To Carbon And Nitrogen Cycling In The Arctic”. Polar Biology 41. Polar Biology (2018): 1531–1545. doi:10.1007/s00300-017-2201-5.
. “Impacts Of Female Body Size On Cannibalism And Juvenile Abundance In A Dominant Arctic Spider”. Journal Of Animal Ecology 89, no. 8. Journal Of Animal Ecology (2020): 1788 - 1798. doi:10.1111/jane.v89.810.1111/1365-2656.13230.
. “Global Change Effects On Plant Communities Are Magnified By Time And The Number Of Global Change Factors Imposed”. Proceedings Of The National Academy Of Sciences 116, no. 36. Proceedings Of The National Academy Of Sciences (2019): 17867 - 17873. doi:10.1073/pnas.1819027116.
. “Respiratory Flexibility And Efficiency Are Affected By Simulated Global Change In Arctic Plants”. New Phytologist 197, no. 4. New Phytologist (2012): 1161-1172. doi:10.1111/nph.12083.
. “A Catchment-Based Approach To Modeling Land Surface Processes In A Gcm - Part I: Model Structure”. Journal Of Geophysical Research: Atmospheres 105, no. D20. Journal Of Geophysical Research: Atmospheres (2000): 24809-24822. doi:10.1029/2000JD900327.
. “Carbon-Degrading Enzyme Activities Stimulated By Increased Nutrient Availability In Arctic Tundra Soils”. Plos One 8, no. 19. Plos One (2013): e77212. doi:10.1371/journal.pone.0077212.
. “Soil Bacterial Community Composition Altered By Increased Nutrient Availability In Arctic Tundra Soils”. Frontiers In Microbiology 5. Frontiers In Microbiology (2014): 516. doi:10.3389/fmicb.2014.00516.
. “Causes And Consequences Of Spatial Heterogeneity In Lakes”. In Ecosystem Function In Heterogeneous Landscapes, 329-347. Ecosystem Function In Heterogeneous Landscapes. NY: Springer, 2005.
. “Ecological Variability In Space And Time: Insights Gained From The Us Lter Program”. Bioscience 53, no. 1. Bioscience (2003): 57-67. doi:10.1641/0006-3568(2003)053%5B0057:EVISAT%5D2.0.CO;2.
. “Breeding On The Leading Edge Of A Northward Expansion: Differences In Morphology And The Stress Response Of The Arctic Gambel’s White-Crowned Sparrow”. Oecologia 180. Oecologia (2016): 33–44. doi:10.1007/s00442-015-3447-7.
.