Bibliography
“Hyporheic Exchange And Water Chemistry Of Two Arctic Tundra Streams Of Contrasting Geomorphology”. Journal Of Geophysical Research: Biogeosciences 113, no. G02029. Journal Of Geophysical Research: Biogeosciences (2008): 14pp. doi:10.1029/2007jg000549.
. “Identification Of Unrecognized Tundra Fire Events On The North Slope Of Alaska”. Journal Of Geophysical Research: Biogeosciences 118. Journal Of Geophysical Research: Biogeosciences (2013): 1334-1344. doi:10.1002/jgrg.20113.
. “Identifying Differences In Carbon Exchange Among Arctic Ecosystem Types”. Ecosystems 9, no. 2. Ecosystems (2006): 288-304. doi:10.1007/s10021-005-0146-y.
. “Imaging Thermal Stratigraphy In Freshwater Lakes Using Georadar”. Geophysical Research Letters 34, no. 24. Geophysical Research Letters (2007): L24405. doi:10.1029/2007gl032488.
. “The Impact Of Deciduous Shrub Dominance On Phenology, Carbon Flux, And Arthropod Biomass In The Alaskan Arctic Tundra”. Department Of Earth And Environmental Sciences. Department Of Earth And Environmental Sciences. Columbia University, 2015. doi:10.7916/D8ZG6RV4.
. “The Impact Of Detailed Snow Physics On The Simulation Of Snow Cover And Subsurface Thermodynamics At Continental Scales”. Journal Of Hydrometeorology 2, no. 3. Journal Of Hydrometeorology (2001): 228-242. doi:10.1175/1525-7541(2001)002<0228%3ATIODSP>2.0.CO%3B2.
. “Impact Of Global Change On Biogeochemistry And Ecology Of An Arctic Freshwater System”. Polar Research 18, no. 2. Polar Research (1999): 207-214. doi:10.1111/j.1751-8369.1999.tb00295.x.
. “Impacts Of Changing Seasonality And Potential For Trophic Mismatches In The Arctic”. Society For Integrative And Comparative Biology (Sicb) Annual Meeting. Society For Integrative And Comparative Biology (Sicb) Annual Meeting. Austin, TX, 2014.
. “Impacts Of Female Body Size On Cannibalism And Juvenile Abundance In A Dominant Arctic Spider”. Journal Of Animal Ecology 89, no. 8. Journal Of Animal Ecology (2020): 1788 - 1798. doi:10.1111/jane.v89.810.1111/1365-2656.13230.
. “Impacts Of Global Change On Composition Of Arctic Communities: Implications For Ecosystem Functioning”. In Global Change And Arctic Terrestrial Ecosystems. Global Change And Arctic Terrestrial Ecosystems. NY: Springer-Verlag, 1997.
. “The Impacts Of Nutrient Enrichment And A Thermokarst Failure On Epipelic Algae In Arctic Lakes Of Differing Morphometry”. Geological Sciences. Geological Sciences. Brown University, 2013.
. “Implications For Seamless Modeling Of Terrestrial Ecosystems (Invited Speaker)”. International Workshop: 3D Vegetation Mapping Using Advanced Remote Sensing. International Workshop: 3D Vegetation Mapping Using Advanced Remote Sensing. St.Oswald, Germany, 2014.
. “The Importance Of Secondary Growth To Plant Responses To Snow In The Arctic”. Functional Ecology 33. Functional Ecology (2019): 1050–1066. doi:10.1111/1365-2435.13323.
. “Improvements In And Environmental Applications Of Double Vial Radiorespirometry For The Study Of Microbial Mineralization”. Applied And Environmental Microbiology 45. Applied And Environmental Microbiology (1983): 255-259. https://aem.asm.org/content/45/1/255.
. “Improving Biogeochemical Knowledge Through Technological Innovation”. Frontiers In Ecology And The Environment 9, no. 1. Frontiers In Ecology And The Environment (2011): 37-43. doi:10.1890/100004.
. “Improving Lake Mixing Process Simulations In The Community Land Model By Using K Profile Parameterization”. Hydrology And Earth System Sciences 23, no. 12. Hydrology And Earth System Sciences (2019): 4969 - 4982. doi:10.5194/hess-23-4969-2019.
. “Improving Lake Mixing Process Simulations In The Community Land Model By Using K Profile Parameterization”. Hydrology And Earth System Sciences 23. Hydrology And Earth System Sciences (2019): 4969–4982. doi:10.5194/hess-23-4969-2019.
. “In Hot(Ter) Water: Predictions Of Arctic Char Growth And Consumption Under Climate Change Scenarios On The Alaska North Slope”. Western Division Of The American Fisheries Society. Western Division Of The American Fisheries Society. Mazatlan, MX, 2014.
. “Incident Radiation And The Allocation Of Nitrogen Within Arctic Plant Canopies: Implications For Predicting Gross Primary Productivity”. Global Change Biology 18, no. 9. Global Change Biology (2012): 2838-2852. doi:10.1111/j.1365-2486.2012.02754.x.
. “Incorporating Clonal Growth Form Clarifies The Role Of Plant Height In Response To Nitrogen Addition”. Oecologia 169, no. 4. Oecologia (2012): 1053-1062. doi:10.1007/s00442-012-2264-5.
. “Increased Ectomycorrhizal Fungal Abundance After Long-Term Fertilization And Warming Of Two Arctic Tundra Ecosystems”. New Phytologist 171, no. 2. New Phytologist (2006): 391-404. doi:10.1111/j.1469-8137.2006.01778.x.
. “Increases In Atmospheric [Co2] And The Soil Food Web”. In Managed Ecosystems And Co2, 187:413-428. Managed Ecosystems And Co2. Springer Berlin Heidelberg, 2006. doi:10.1007/3-540-31237-4_23.
. “Increasing Leaf Temperature Reduces The Suppression Of Isoprene Emission By Elevated Co2 Concentration”. Science Of The Total Environment 481. Science Of The Total Environment (2014): 352-359. doi:10.1016/j.scitotenv.2014.02.065.
. “Increasing River Discharge In The Eurasian Arctic: Consideration Of Dams, Permafrost Thaw, And Fires As Potential Agents Of Change”. Journal Of Geophysical Research: Atmospheres 109, no. D18. Journal Of Geophysical Research: Atmospheres (2004): no. 18102. doi:10.1029/2004JD004583.
. “Individualistic Growth Response Of Tundra Plant Species To Environmental Manipulations In The Field”. Ecology 66, no. 2. Ecology (1985): 564-576. doi:10.2307/1940405.
.