Bibliography
“Adrenocortical Responses To Stress On The Leading Edge Of A Northward Range Expansion In White-Crowned Sparrows”. Society Of Integrative And Comparative Biology’s (Sicb) Annual Meeting. Society Of Integrative And Comparative Biology’s (Sicb) Annual Meeting. Austin, TX, 2014.
. “Impacts Of Changing Seasonality And Potential For Trophic Mismatches In The Arctic”. Society For Integrative And Comparative Biology (Sicb) Annual Meeting. Society For Integrative And Comparative Biology (Sicb) Annual Meeting. Austin, TX, 2014.
. “Weathering The Storm: Do Arctic Blizzards Cause Repeatable Changes In Stress Physiology And Body Condition In Breeding Songbirds?”. General And Comparative Endocrinology 267. General And Comparative Endocrinology (2018): 183 - 192. doi:10.1016/j.ygcen.2018.07.004.
. “The Effects Of An Extreme Spring On Body Condition And Stress Physiology In Lapland Longspurs And White-Crowned Sparrows Breeding In The Arctic”. Functional Ecology 237. Functional Ecology (2016): 10-18. doi:10.1016/j.ygcen.2016.07.015.
. “Breeding On The Leading Edge Of A Northward Expansion: Differences In Morphology And The Stress Response Of The Arctic Gambel's White-Crowned Sparrow”. Oecologia 180, no. 1. Oecologia (2016): 33-44. doi:10.1007/s00442-015-3447-7.
. “Water And Sediment Export Of The Upper Kuparuk River Drainage Of The North Slope Of Alaska”. Hydrobiologia 240. Hydrobiologia (1992): 71-81. doi:10.1007/BF00013453.
. “Shallow Soils Are Warmer Under Trees And Tall Shrubs Across Arctic And Boreal Ecosystems”. Environmental Research Letters 16. Environmental Research Letters (2021): 015001. doi:10.1088/1748-9326/abc994.
. “Spectral Indices For Remote Sensing Of Phytomass, Deciduous Shrubs, And Productivity In Alaskan Arctic Tundra”. International Journal Of Remote Sensing 36, no. 17. International Journal Of Remote Sensing (2015): 4344 - 4362. doi:10.1080/01431161.2015.1080878.
. “Mismatch Of N Release From The Permafrost And Vegetative Uptake Opens Pathways Of Increasing Nitrous Oxide Emissions In The High Arctic”. Global Change Biology 28, no. 20. Global Change Biology (2022): 5973 - 5990. doi:10.1111/gcb.v28.20.
. “Plant Nutrient-Acquisition Strategies Change With Soil Age”. Trends In Ecology And Evolution 23, no. 2. Trends In Ecology And Evolution (2008): 95-103. doi:10.1016/j.tree.2007.10.008.
. “Arctic Warming On Two Continents Has Consistent Negative Effects On Lichen Diversity And Mixed Effects On Bryophyte Diversity”. Global Change Biology 18, no. 3. Global Change Biology (2012): 1096-1107. doi:10.1111/j.1365-2486.2011.02570.x.
. “Microbial Biogeography Of Arctic Streams: Exploring Influences Of Lithology And Habitat”. Frontiers In Microbiology 3. Frontiers In Microbiology (2012). doi:10.3389/fmicb.2012.00309.
. “Thermokarst And Wildfire: Effects Of Disturbances Related To Climate Change On The E Cological Characteristics And Functions Of Arctic Headwater Streams”. Natural Resources. Natural Resources. The University of Vermont, 2015. https://scholarworks.uvm.edu/graddis/520.
. “Environmental Influences On The Genetic Diversity Of Bacterial Communities In Arctic Streams”. Natural Resources. Natural Resources. University of Vermont, 2009. https://scholarworks.uvm.edu/graddis/131.
. “The Role Of Watershed Characteristics, Permafrost Thaw, And Wildfire On Dissolved Organic Carbon Biodegradability And Water Chemistry In Arctic Headwater Streams”. Biogeosciences Discussions 12, no. 5. Biogeosciences Discussions (2015): 4021 - 4056. doi:10.5194/bg-12-4221-2015.
. “Greenhouse Gas Exchange In Small Arctic Thaw Ponds”. American Geophysical Union Annual Meeting. American Geophysical Union Annual Meeting. San Francisco, CA, 2014.
. “Variability In Greenhouse Gas Emissions From Permafrost Thaw Ponds”. Limnology And Oceanography 55, no. 1. Limnology And Oceanography (2010): 115-133. doi:10.4319/lo.2010.55.1.0115.
. “Modeling Biogeochemical Responses Of Tundra Ecosystems To Temporal And Spatial Variations In Climate In The Kuparuk River Basin (Alaska)”. Journal Of Geophysical Research: Atmospheres 108, no. D2. Journal Of Geophysical Research: Atmospheres (2003): 8165. doi:10.1029/2001JD000960.
. “A Multivariate Approach To The Analysis Of Factorial Fertilization Experiments In Alaskan Arctic Tundra”. Ecology 63, no. 4. Ecology (1982): 1029-1038. doi:10.2307/1937242.
. “Bacterioplankton Dispersal And Biogeochemical Function Across Alaskan Arctic Catchments”. Environmental Microbiology 24, no. 12. Environmental Microbiology (2022): 5690 - 5706. doi:10.1111/1462-2920.16259.
. “The Effects Of Aquatic Bryophytes And Long-Term Fertilization On Arctic Streams”. Journal Of The North American Benthological Society 19, no. 4. Journal Of The North American Benthological Society (2000): 697-708. doi:10.2307/1468127.
. “A Framework For Prioritization, Design And Coordination Of Arctic Long-Term Observing Networks: A Perspective From The U.s. Search Program”. Arctic 68. Arctic (2016): 76. doi:10.14430/arctic4450.
. “A Framework For Prioritization, Design And Coordination Of Arctic Long-Term Observing Networks: A Perspective From The U.s. Search Program”. Arctic 68, no. 5. Arctic (2015): 76. doi:10.14430/arctic4450.
. “Nutrient Limitation Of Phytoplankton Production In Alaskan Arctic Foothill Lakes”. Hydrobiologia 455. Hydrobiologia (2001): 189-201. doi:10.1023/A:1011954221491.
. “Effects Of Vertical Hydrodynamic Mixing On Photomineralization Of Dissolved Organic Carbon In Arctic Surface Waters”. Environmental Science: Processes & Impacts 21, no. 4. Environmental Science: Processes & Impacts (2019): 748 - 760. doi:10.1039/C8EM00455B.
.