Bibliography
.
“Influence Of Environmental Variability On The Growth Of Age-0 And Adult Arctic Grayling”. Transactions Of The American Fisheries Society 128, no. 6. Transactions Of The American Fisheries Society (1999): 1163-1175. doi:10.1577/1548-8659(1999)128<1163:IOEVOT>2.0.CO;2.
. “The Influence Of Light And Nutrient Addition Upon The Sediment Chemistry Of Iron In An Arctic Lake”. Hydrobiologia 240, no. 1-3. Hydrobiologia (1992): 91-101. doi:10.1007/978-94-011-2720-2_9.
. “Influence Of Morphology And Permafrost Dynamics On Hyporheic Exchange In Arctic Headwater Streams Under Warming Climate Conditions”. Geophysical Research Letters 35, no. 2. Geophysical Research Letters (2008): L02501. doi:10.1029/2007GL032049.
. “Influence Of Stream Size On Ammonium And Suspended Particulate Nitrogen Processing”. Limnology And Oceanography 46, no. 1. Limnology And Oceanography (2001): 1-13. doi:10.4319/lo.2001.46.1.0001.
. “Influence Of Temperature And Light On Rates Of Inorganic Nitrogen Transport By Algae In An Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 41, no. 9. Canadian Journal Of Fisheries And Aquatic Sciences (1984): 1310-1318. doi:10.1139/f84-160.
. “Influence Of Topography On Soil Acidity And Hydrogen Ion Budgets In An Arctic Landscape”. Duke University, 1991.
. “Influences Of Slimy Sculpin (Cottus Cognatus) Predation On The Rocky Littoral Invertebrate Community Of An Arctic Lake”. Hydrobiologia 240, no. 1-3. Hydrobiologia (1992): 83-90. doi:10.1007/Bf00013454.
. “Infrastructure Development Accelerates Range Expansion Of Trembling Aspen (Populus Tremuloides, Salicaceae) Into The Arctic.”. Arctic 69, no. 2. Arctic (2016): 130-136. doi:10.14430/arctic4560.
. “Infrastructure Development Accelerates Range Expansion Of Trembling Aspen (\Textit{Populus Tremuloides, Salicaceae) Into The Arctic”. Arctic 69. Arctic (2016). doi:10.14430/arctic4560.
. “Insect Diversity, Life History, And Trophic Dynamics In Arctic Streams, With Particular Emphasis On Blackflies (Diptera: Simuliidae)”. In Arctic And Alpine Biodiversity: Patterns, Causes And Ecosystem Consequences, Ecological Studies:283-295. Arctic And Alpine Biodiversity: Patterns, Causes And Ecosystem Consequences. Berlin: Springer Berlin Heidelberg, 1995. doi:10.1007/978-3-642-78966-3_20.
. “Insights Into The Complete And Partial Photooxidation Of Black Carbon In Surface Waters”. Environmental Science Process Impacts 16, no. 4. Environmental Science Process Impacts (2014): 721-731. doi:10.1039/c3em00597f.
. “Insights Into The Tussock Growth Form With Model Data Fusion”. New Phytologist n/a. New Phytologist (2023). doi:10.1111/nph.18751.
. “Insights Into The Tussock Growth Form With Model–Data Fusion”. New Phytologist. New Phytologist (2023). doi:10.1111/nph.18751.
. “Insolation And Greenhouse Gases Drove Holocene Winter And Spring Warming In Arctic Alaska”. Quaternary Science Reviews 242. Quaternary Science Reviews (2020): 106438. doi:10.1016/j.quascirev.2020.106438.
. “An Integrated Assessment Of The Influences Of Upland Thermal-Erosional Features On Landscape Structure And Function In The Foothills Of The Brooks Range, Alaska”. Proceedings Of The Tenth International Conference On Permafrost. Proceedings Of The Tenth International Conference On Permafrost. Salekhard, Yamal-Nenets Autonomous District, Russia, 2012.
. “Integrated Ecosystem Research In Northern Alaska, 1947-1994”. In Landscape Function And Disturbance In Arctic Tundra, 19-33. Landscape Function And Disturbance In Arctic Tundra. Springer Berlin Heidelberg, 1996. doi:10.1007/978-3-662-01145-4_2.
. “Integration Of Lakes And Streams In A Landscape Perspective: The Importance Of Material Processing On Spatial Patterns And Temporal Coherence”. Freshwater Biology 43. Freshwater Biology (2000): 477-497. doi:10.1046/j.1365-2427.2000.00515.x.
. “Interactions Among Shrub Cover And The Soil Microclimate May Determine Future Arctic Carbon Budgets”. Ecology Letters 15, no. 12. Ecology Letters (2012): 1415-1422. doi:10.1111/j.1461-0248.2012.01865.x.
. “Interactions Between Canopy Structure And Leaf Trait Distribution In Arctic Shrub Communities”. School Of Geosciences. School Of Geosciences. University of Edinburgh, 2013.
. “Interactions Between Sunlight And Microorganisms Influence Dissolved Organic Matter Degradation Along The Aquatic Continuum”. Limnology And Oceanography Letters 3. Limnology And Oceanography Letters (2018): 102-116. doi:10.1002/lol2.10060.
. “Interannual And Seasonal Patterns Of Carbon Dioxide, Water, And Energy Fluxes From Ecotonal And Thermokarst‐Impacted Ecosystems On Carbon‐Rich Permafrost Soils In Northeastern Siberia”. Journal Of Geophysical Research: Biogeosciences 122. Journal Of Geophysical Research: Biogeosciences (2017): 2651–2668. doi:10.1002/2017JG004070.
. “Inter-Annual Fidelity To Summer Feeding Sites In Arctic Grayling”. Environmental Biology Of Fishes 59, no. 3. Environmental Biology Of Fishes (2000): 319-327. doi:10.1023/A:1007626507936.
. “Interannual, Summer, And Diel Variability Of Ch $_\Textrm4$ And Co $_\Textrm2$ Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environmental Science: Processes & Impacts. Environmental Science: Processes & Impacts (2020): 10.1039.D0EM00125B. doi:10.1039/d0em00125b.
. “Interannual, Summer, And Diel Variability Of Ch4 And Co2 Effluxes From Toolik Lake, Alaska, During The Ice-Free Periods 2010–2015”. Environ. Sci.: Processes Impacts 22. Environ. Sci.: Processes Impacts (2020): 2181-2198. doi:10.1039/D0EM00125B.
.