Bibliography
“The Effect Of Heterocope Predation On Zooplankton Communities In Arctic Ponds”. Limnology And Oceanography 28. Limnology And Oceanography (1983): 367-377. doi:10.4319/lo.1983.28.2.0367.
. “The Effect Of Heterocope Predation On Arctic Pond Zooplankton Communities”. Department Of Ecology And Evolutionary Biology. Department Of Ecology And Evolutionary Biology. University of Kansas, 1981.
. “Photoprotective Pigments In A Pond Morph Of Daphnia Middendorffiana”. Arctic 36, no. 4. Arctic (1983): 365-368. doi:10.14430/arctic2292.
. “The Effect Of Heterocope Predation On Zooplankton Communities In Arctic Ponds1: Heterocope Predation”. Limnology And Oceanography 28. Limnology And Oceanography (1983): 367–377. doi:10.4319/lo.1983.28.2.0367.
. “Phototoxicity And Fish Predation: Selective Factors In Color Morphs In Heterocope1: Coloration Of Heterocope”. Limnology And Oceanography 26. Limnology And Oceanography (1981): 454–460. doi:10.4319/lo.1981.26.3.0454.
. “Phototoxicity And Fish Predation: Selective Factors In Color Morphs In Heterocope”. Limnology And Oceanography 26. Limnology And Oceanography (1981): 454-460. doi:10.4319/lo.1981.26.3.0454.
. “Landscape Effects On Growth Of Age-0 Arctic Grayling In Tundra Streams”. Transactions Of The American Fisheries Society 137, no. 1. Transactions Of The American Fisheries Society (2008): 236-243. doi:10.1577/T05-039.1.
. “Photoprotective Pigmentation Of Freshwater Zooplankton: A Phenomenon Of Extreme Environments”. In Adaptive Coloration In Invertebrates, 101-108. Adaptive Coloration In Invertebrates. American Society of Zoologists, 1990.
. “Dissolved Organic Matter Chemistry And Transport Along An Arctic Tundra Hillslope”. Global Biogeochemical Cycles 33. Global Biogeochemical Cycles (2019): 47-62. doi:10.1029/2018GB006030.
. “Digging Deep Under A Midnight Sun”. Ecopress. Ecopress, 2014. http://nrelscience.org/2014/09/02/digging-deep-under-a-midnight-sun/.
. “Tracking The Fate Of Fresh Carbon In The Arctic Tundra: Will Shrub Expansion Alter Responses Of Soil Organic Matter To Warming?”. Soil Biology And Biochemistry 120. Soil Biology And Biochemistry (2018): 134 - 144. doi:10.1016/j.soilbio.2018.02.002.
. “Leaf And Root Phenology And Biomass Of Eriophorum Vaginatum In Response To Warming In The Arctic”. Journal Of Plant Ecology. Journal Of Plant Ecology (2022): rtac010. doi:10.1093/jpe/rtac010.
. “Responses Of Root Phenology In Ecotypes Of Eriophorum Vaginatum To Transplantation And Warming In The Arctic”. Science Of The Total Environment 805. Science Of The Total Environment (2022): 149926. doi:10.1016/j.scitotenv.2021.149926.
. “Leaf And Root Phenology And Biomass Of Eriophorum Vaginatum In Response To Warming In The Arcticabstract”. Journal Of Plant Ecology 15, no. 5. Journal Of Plant Ecology (2022): 1091 - 1105. doi:10.1093/jpe/rtac010.
. “Turbulence: Implications For Emissions Of Greenhouse Gases”. Thaw 2014 - Thermokarst Aquatic Ecosystems Workshop: Freshwater Ecosystems In Changing Permafrost Landscapes. Thaw 2014 - Thermokarst Aquatic Ecosystems Workshop: Freshwater Ecosystems In Changing Permafrost Landscapes. Quebec City, QC, 2014.
. “Buoyancy Flux, Turbulence, And The Gas Transfer Coefficient In A Stratified Lake”. Geophysical Research Letters 37, no. 24. Geophysical Research Letters (2010): L24604. doi:10.1029/2010gl044164.
. “Turbulence And Ghg Emissions In Lakes Across Latitudes: Implications For Biogeochemistry (Invited Speaker)”. Advancing The Science Of Gas Exchange Between Fresh Waters And The Atmosphere. Advancing The Science Of Gas Exchange Between Fresh Waters And The Atmosphere. Hyytiälä Field Station, Korkeakoski, Finland, 2014.
. “Climate Related Variations In Mixing Dynamics Of An Alaskan Arctic Lake”. Limnology And Oceanography 54. Limnology And Oceanography (2009): 2401-2417. doi:10.4319/lo.2009.54.6_part_2.2401.
. “Describing Fluxes Within Lakes Using Temperature Arrays And Surface Meteorology”. Vereinigung Verhandlungen International Limnologie 30. Vereinigung Verhandlungen International Limnologie (2008): 339-344. doi:10.1080/03680770.2008.11902139.
. “Capturing The Consequences Of Non-Linear Internal Waves In Hydrodynamic Models”. Aslo Annual Meeting. Aslo Annual Meeting. Grenada, Spain, 2015.
. “Sediment Respiration Drives Circulation And Production Of Co 2 In Ice-Covered Alaskan Arctic Lakes”. Limnology And Oceanography Letters. Limnology And Oceanography Letters (2018). doi:10.1002/lol2.10083.
. “The Critical Importance Of Buoyancy Flux For Gas Flux Across The Air-Water Interface”. In Gas Transfer At Water Surfaces, 135-139. Gas Transfer At Water Surfaces. American Geophysical Union, Geophysical Monograph 127., 2002.
. “Sediment Respiration Drives Circulation And Production Of Co $_\Textrm2$ In Ice-Covered Alaskan Arctic Lakes”. Limnology And Oceanography Letters. Limnology And Oceanography Letters (2018). doi:10.1002/lol2.10083.
. “Turbulence In A Small Arctic Pond”. Limnology And Oceanography 63. Limnology And Oceanography (2018): 2337–2358. doi:10.1002/lno.10941.
. “Physical Pathways Of Nutrient Supply In A Small, Ultra-Oligotrophic Lake During Summer Stratification”. Limnology And Oceanography 51, no. 2. Limnology And Oceanography (2006): 1107-1124. doi:10.4319/lo.2006.51.2.1107.
.