Bibliography
“Long-Term Ecological Research In A Human-Dominated World”. Bioscience 62, no. 4. Bioscience (2012): 342-353. doi:10.1525/bio.2012.62.4.6.
. “Long-Term Ecosystem Level Experiments In Toolik Lake, Alaska, And Abisko, Northern Sweden: Generalizations And Differences In Ecosystem And Plant Type Responses To Global Change”. Global Change Biology 10, no. 1. Global Change Biology (2004): 105-123. doi:10.1111/j.1365-2486.2003.00719.x.
. “Long-Term Effects Of Po4 Fertilization On The Distribution Of Bryophytes In An Arctic River”. Freshwater Biology 32, no. 2. Freshwater Biology (1994): 445-454. doi:10.1111/j.1365-2427.1994.tb01138.x.
. “Long-Term Experimental Manipulation Of Climate Alters The Ectomycorrhizal Community Of Betula Nana In Arctic Tundra”. Global Change Biology 17, no. 4. Global Change Biology (2011): 1625-1636. doi:10.1111/j.1365-2486.2010.02318.x.
. “Long-Term Experimental Warming And Fertilization Have Opposing Effects On Ectomycorrhizal Root Enzyme Activity And Fungal Community Composition In Arctic Tundra”. Soil Biology And Biochemistry 154. Soil Biology And Biochemistry (2021): 108151. doi:10.1016/j.soilbio.2021.108151.
. “Long-Term Experimental Warming And Nutrient Additions Increase Productivity In Tall Deciduous Shrub Tundra”. Ecosphere 6, no. 5. Ecosphere (2014): Article 72. doi:10.1890/es13-00281.1.
. “Long-Term Impact Of An Invertebrate Predator Heterocope Septentrionalis On An Arctic Pond Zooplankton Community”. Freshwater Biology 46, no. 1. Freshwater Biology (2000): 39-45. doi:10.1046/j.1365-2427.2001.00650.x.
. “Long-Term Mammalian Herbivory And Nutrient Addition Alter Lichen Community Structure In Alaskan Dry Heath Tundra”. Arctic, Antarctic And Alpine Research 40, no. 1. Arctic, Antarctic And Alpine Research (2008): 65-73. doi:10.1657/1523-0430(06-087)%5BGough%5D2.0.Co;2.
. “Long-Term Nutrient Addition Alters Arthropod Community Composition But Does Not Increase Total Biomass Or Abundance”. Oikos 127, no. 3. Oikos (2018): 460 - 471. doi:10.1111/oik.04398.
. “Long-Term Release Of Carbon Dioxide From Arctic Tundra Ecosystems In Alaska”. Ecosystems 20, no. 5. Ecosystems (2017): 960 - 974. doi:10.1007/s10021-016-0085-9.
. “Long-Term Reliability Of The Figaro Tgs 2600 Solid-State Methane Sensor Under Low-Arctic Conditions At Toolik Lake, Alaska”. Atmospheric Measurement Techniques 13, no. 5. Atmospheric Measurement Techniques (2020): 2681 - 2695. doi:10.5194/amt-13-2681-2020.
. “Long-Term Response And Recovery To Nutrient Addition Of A Partitioned Arctic Lake”. Freshwater Biology 50, no. 5. Freshwater Biology (2005): 731-741. doi:10.1111/j.1365-2427.2005.01354.x.
. “Long-Term Response Of The Kuparuk River Ecosystem To Phosphorus Fertilization”. Ecology 85, no. 4. Ecology (2004): 939-954. doi:10.1890/02-4039.
. “Long-Term Responses To Factorial, Npk Fertilizer Treatment By Alaskan Wet And Moist Tundra Sedge Species”. Ecography 18, no. 3. Ecography (1995): 259-275. doi:10.1111/j.1600-0587.1995.tb00129.x.
. “Long-Term Survival Of Adult Arctic Grayling (Thymallus Arcticus) In The Kuparuk River, Alaska”. Canadian Journal Of Fisheries And Aquatic Sciences 61, no. 10. Canadian Journal Of Fisheries And Aquatic Sciences (2004): 1954-1964. doi:10.1139/F04-126.
. “Long-Term Warming Alters The Composition Of Arctic Soil Microbial Communities”. Fems Microbiol Ecol 82, no. 2. Fems Microbiol Ecol (2012): 303-15. doi:10.1111/j.1574-6941.2012.01350.x.
. “Long-Term Warming In Alaska Enlarges The Diazotrophic Community In Deep Soils”. Mbio 10. Mbio (2019): e02521–18. doi:10.1128/mBio.02521-18.
. “Long-Term Warming Restructures Arctic Tundra Without Changing Net Soil Carbon Storage”. Nature 497. Nature (2013): 615-618. doi:10.1038/nature12129.
. “Long‐Term Hydrological, Biogeochemical, And Ecological Data For The Kuparuk River, North Slope, Alaska”. Hydrological Processes 35. Hydrological Processes (2021). doi:10.1002/hyp.14115.
. “Luxury Consumption: A Possible Competitive Strategy In Above-Belowground Carbon Allocation For Slow-Growing Vegetation?”. Journal Of Ecology 91, no. 4. Journal Of Ecology (2003): 664-676. doi:10.1046/j.1365-2745.2003.00788.x.
. “Macrosystems Ecology: Understanding Ecological Patterns And Processes At Continental Scales”. Frontiers In Ecology And The Environment 12, no. 1. Frontiers In Ecology And The Environment (2014): 5-14. doi:10.1890/130017.
. “Mammalian Herbivory Exacerbates Plant Community Responses To Long-Term Increased Soil Nutrients In Two Alaskan Tundra Plant Communities”. Arctic Science 4. Arctic Science (2018): 153-166. doi:10.1139/AS-2017-0025.
. “Maximum Summer Temperatures Predict The Temperature Adaptation Of Arctic Soil Bacterial Communities”. Biogeosciences Discussions. Biogeosciences Discussions (2022): 1–26. doi:10.5194/bg-2022-184.
. “Measuring Nutrient Availability In Arctic Soils Using Ion-Exchange Resins: A Field Test”. Soil Science Society Of America Journal 58, no. 4. Soil Science Society Of America Journal (1994): 1154-1162. doi:10.2136/sssaj1994.03615995005800040021x.
. “Measuring Thaw Depth Beneath Arctic Streams Using Ground-Penetrating Radar”. Hydrological Processes 19, no. 14. Hydrological Processes (2005): 2689-2699. doi:10.1002/Hyp.5781.
.