Bibliography
“Introduction To The Limnology Of High-Latitude Lake And River Ecosystems”. In Polar Lakes And Rivers: Limnology Of Arctic And Antarctic Aquatic Ecosystems., 23-Jan. Polar Lakes And Rivers: Limnology Of Arctic And Antarctic Aquatic Ecosystems. Oxford: Oxford University Press, 2008.
. “Ecology Of Arctic Lakes And Rivers”. In The Arctic: Environment, People, Policy, 197-232. The Arctic: Environment, People, Policy. United Kingdom: Harwood Academic Publishers, 2000.
. “Reflecting On Alaska: Advanced Remote Sensing Approaches To Understand Tundra Vegetation Change (Invited Speaker)”. Columbia University, New York, NY, 2013.
. “Microbial Adaptations To Extreme Environments”. In Microorganisms In Action, 193-206. Microorganisms In Action. Oxford, England: Blackwell Scientific Publications, 1988.
. “Recovery Of Productivity And Species Diversity In Tussock Tundra Following Disturbance”. Arctic, Antarctic And Alpine Research 31, no. 3. Arctic, Antarctic And Alpine Research (1999): 254-258. doi:10.2307/1552254.
. “Optical Instruments For Measuring Leaf Area Index In Low Vegetation: Application In Arctic Ecosystems”. Ecological Applications 15. Ecological Applications (2005): 1462-1470. doi:10.1890/03-5354.
. “Long-Term Ecosystem Level Experiments In Toolik Lake, Alaska, And Abisko, Northern Sweden: Generalizations And Differences In Ecosystem And Plant Type Responses To Global Change”. Global Change Biology 10, no. 1. Global Change Biology (2004): 105-123. doi:10.1111/j.1365-2486.2003.00719.x.
. “Tight Coupling Between Leaf Area Index And Foliage N Content In Arctic Plant Communities”. Oecologia 142, no. 3. Oecologia (2005): 421-427. doi:10.1007/s00442-004-1733-x.
. “Inter-Annual Variability Of Plant Phenology In Tussock Tundra: Modelling Interactions Of Plant Productivity, Snowmelt, And Soil Thaw”. Global Change Biology 9, no. 5. Global Change Biology (2003): 743-758. doi:10.1046/j.1365-2486.2003.00625.x.
. “Luxury Consumption: A Possible Competitive Strategy In Above-Belowground Carbon Allocation For Slow-Growing Vegetation?”. Journal Of Ecology 91, no. 4. Journal Of Ecology (2003): 664-676. doi:10.1046/j.1365-2745.2003.00788.x.
. “Long-Term Warming Research In High-Latitude Ecosystems: Responses From Polar Ecosystems And Implications For Future Climate”. In Ecosystem Consequences Of Soil Warming. 1st ed. Ecosystem Consequences Of Soil Warming. Academic Press, 2019.
. “Factors Determining Plant Species Richness In Alaskan Arctic Tundra”. Journal Of Vegetation Science 14, no. 5. Journal Of Vegetation Science (2003): 711-720. doi:10.1111/j.1654-1103.2003.tb02203.x.
. “Response Of Dark Respiration To Temperature In Eriophorum Vaginatum From A 30-Year-Old Transplant Experiment In Alaska”. Plant Ecology And Diversity. Plant Ecology And Diversity (2012): 1-5. doi:10.1080/17550874.2012.729618.
. “Influence Of Topography On Soil Acidity And Hydrogen Ion Budgets In An Arctic Landscape”. Duke University, 1991.
. .
“Growing Season And Spatial Variations Of Carbon Fluxes Of Arctic And Boreal Ecosystems In Alaska (Usa)”. Ecological Applications 23, no. 8. Ecological Applications (2013): 1798-1816. doi:10.1890/11-0875.1.
. “Change In Surface Energy Balance In Alaska Due To Fire And Spring Warming, Based On Upscaling Eddy Covariance Measurements”. Journal Of Geophysical Research: Biogeosciences 119, no. 10. Journal Of Geophysical Research: Biogeosciences (2014): 1947-1969. doi:10.1002/2014jg002717.
. “Cycling Of Dissolved Elemental Mercury In Arctic Alaskan Lakes”. Geochemica Et Cosmochemica Acta 68, no. 6. Geochemica Et Cosmochemica Acta (2004): 1173-1184. doi:10.1016/j.gca.2003.07.023.
. “The Role Of Iron And Reactive Oxygen Species In The Production Of Co 2 In Arctic Soil Waters”. Geochimica Et Cosmochimica Acta 224, no. 1. Geochimica Et Cosmochimica Acta (2018): 80 - 95. doi:10.1016/j.gca.2017.12.022.
. “The Controls Of Iron And Oxygen On Hydroxyl Radical (•Oh) Production In Soils”. Soil Systems 3, no. 1. Soil Systems (2019): 1. doi:10.3390/soilsystems3010001.
. “Seasonal And Hydrologic Drivers Of Dissolved Organic Matter And Nutrients In The Upper Kuparuk River, Alaskan Arctic”. Biogeochemistry 103, no. 1-3. Biogeochemistry (2011): 109-124. doi:10.1007/s10533-010-9451-4.
. “Partitioning Assimilatory Nitrogen Uptake In Streams: An Analysis Of Stable Isotope Tracer Additions Across Continents”. Ecological Monographs 88, no. 1. Ecological Monographs (2018): 120 - 138. doi:10.1002/ecm.1280.
. “Emerging Opportunities And Challenges In Phenology: A Review”. Ecosphere 7, no. 8. Ecosphere (2016): e01436. doi:10.1002/ecs2.1436.
. “Modeling Co2 Emissions From Arctic Lakes: Model Development And Site-Level Study”. Journal Of Advances In Modeling Earth Systems 9. Journal Of Advances In Modeling Earth Systems (2017). doi:10.1002/2017MS001028.
. “The Impact Of Deciduous Shrub Dominance On Phenology, Carbon Flux, And Arthropod Biomass In The Alaskan Arctic Tundra”. Department Of Earth And Environmental Sciences. Department Of Earth And Environmental Sciences. Columbia University, 2015. doi:10.7916/D8ZG6RV4.
.