Bibliography
“Microsite Conditions In Retrogressive Thaw Slumps May Facilitate Increased Seedling Recruitment In The Alaskan Low Arctic”. Ecology And Evolution 9. Ecology And Evolution (2019): 1880–1897. doi:10.1002/ece3.4882.
. “Migration Of Metals In Sediment Pore Waters: Problems For The Interpretation Of Historical Deposition Rates”. Proceedings Of The 6Th International Conference On Heavy Metals In The Environment. Proceedings Of The 6Th International Conference On Heavy Metals In The Environment. New Orleans, 1987.
. “Mineral Adsorption Effects On Permafrost Carbon”. Ecology And Evolutionary Biology. Ecology And Evolutionary Biology. University of Michigan, 2014.
. “Mineral Nutrition And Leaf Longevity In An Evergreen Shrub, Ledum Palustre Ssp. Decumbens”. Oecologia 49, no. 3. Oecologia (1981): 362-365. doi:10.1007/BF00347599.
. “Mineral Nutrition And Leaf Longevity In Ledum Palustre : The Role Of Individual Nutrients And The Timing Of Leaf Mortality”. Oecologia 56, no. 2-3. Oecologia (1983): 160-165. doi:10.1007/BF00379686.
. “Mineralization And Distribution Of Nutrients By Plants And Microbes In Four Arctic Ecosystems: Responses To Warming”. Plant And Soil 242, no. 1. Plant And Soil (2002): 93-106. doi:10.1023/A:1019642007929.
. “Mineralization Of Glucose And Lignocellulose By Four Arctic Freshwater Sediments In Response To Nutrient Enrichment”. Applied And Environmental Microbiology 58, no. 2. Applied And Environmental Microbiology (1992): 1554-1563. http://aem.asm.org/content/58/5/1554.full.pdf+html.
. “Mismatch Of N Release From The Permafrost And Vegetative Uptake Opens Pathways Of Increasing Nitrous Oxide Emissions In The High Arctic”. Global Change Biology 28, no. 20. Global Change Biology (2022): 5973 - 5990. doi:10.1111/gcb.v28.20.
. “A Model Of Multiple-Element Limitation For Acclimating Vegetation”. Ecology 73, no. 4. Ecology (1992): 1157-1174. doi:10.2307/1940666.
. “Model Responses To Co 2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32, no. 1. Ecological Applications (2022). doi:10.1002/eap.v32.110.1002/eap.2478.
. “Model Responses To Co2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32. Ecological Applications (2022). doi:10.1002/eap.2478.
. “Modeling Biogeochemical Responses Of Tundra Ecosystems To Temporal And Spatial Variations In Climate In The Kuparuk River Basin (Alaska)”. Journal Of Geophysical Research: Atmospheres 108, no. D2. Journal Of Geophysical Research: Atmospheres (2003): 8165. doi:10.1029/2001JD000960.
. “Modeling Carbon Responses Of Tundra Ecosystems To Historical And Project Climate: A Comparison Of A Plot- And A Global-Scale Ecosystem Model To Identify Process-Based Uncertainties”. Global Change Biology 6, no. s1. Global Change Biology (2000): 127-140. doi:10.1046/j.1365-2486.2000.06009.x.
. “Modeling Carbon–Nutrient Interactions During The Early Recovery Of Tundra After Fire”. Ecological Applications 25, no. 6. Ecological Applications (2015): 1640 - 1652. doi:10.1890/14-1921.1.
. “Modeling Co2 Emissions From Arctic Lakes: Model Development And Site-Level Study”. Journal Of Advances In Modeling Earth Systems 9. Journal Of Advances In Modeling Earth Systems (2017). doi:10.1002/2017MS001028.
. “Modeling Coupled Biogeochemical Cycles”. Frontiers In Ecology And The Environment 9, no. 1. Frontiers In Ecology And The Environment (2011): 68-73. doi:10.1890/090223.
. “Modeling For Understanding V. Modeling For Numbers”. Ecosystems 20. Ecosystems (2017): 215 - 221. doi:10.1007/s10021-016-0067-y.
. “Modeling Lakes And Reservoirs In The Climate System”. Limnology And Oceanography 54, no. 6-2. Limnology And Oceanography (2009): 2315-2329. doi:10.4319/lo.2009.54.6_part_2.2315.
. “Modeling Long-Term Changes In Tundra Carbon Balance Following Wildfire, Climate Change And Potential Nutrient Addition”. Ecological Applications 27, no. 1. Ecological Applications (2017): 105–117 . doi:10.1002/eap.1413.
. “Modeling Long‐Term Changes In Tundra Carbon Balance Following Wildfire, Climate Change, And Potential Nutrient Addition”. Ecological Applications 27. Ecological Applications (2017): 105–117. doi:10.1002/eap.1413.
. “Modeling Snowcover Hyeterogeneity Over Complex Terrain For Regional And Global Climate Models”. Journal Of Hydrometeorology 5. Journal Of Hydrometeorology (2004): 33-48. doi:10.1175/1525-7541(2004)005%3C0033:MSHOCA%3E2.0.CO;2.
. “Modeling The Effects Of Snowpack On Heterotrophic Respiration Across Northern Temperate And High Latitude Regions: Comparison With Measurements Of Atmospheric Carbon Dioxide In High Latitudes”. Biogeochemistry 48. Biogeochemistry (2000): 94-114. doi:10.1023/A:1006286804351.
. “Modeling Transport And Fate Of Riverine Dissolved Organic Carbon In The Arctic Ocean”. Global Biogeochemical Cycles 23, no. 4. Global Biogeochemical Cycles (2009): GB4006. doi:10.1029/2008GB003396.
. “Modeling Trophic Pathways, Nutrient Cycling, And Dynamic Stability In Soils”. Pedobiologia 49. Pedobiologia (2005): 499-510. doi:10.1016/j.pedobi.2005.05.008.
. “Modelling Carbon Responses Of Tundra Ecosystems To Historical And Projected Climate: Sensitivity Of Pan-Arctic Carbon Storage To Temporal And Spatial Variation In Climate”. Global Change Biology 6. Global Change Biology (2000): 141-159. doi:10.1046/j.1365-2486.2000.06017.x.
.