Bibliography
“Carbon And Nitrogen Cycling In Soils From Acidic And Nonacidic Tundra With Different Glacial Histories In Northern Alaska”. Ecosystems 5. Ecosystems (2002): 761-774. doi:10.1007/s10021-002-0185-6.
. The Ecology Of Tundra Ponds Of The Arctic Coastal Plain: A Community Profile. Fish and Wildlife Service FWS/OBS-83/25, 1984.
. “Arctic Tundra”. In Arctic Ecology, 103-132. Arctic Ecology. John Wiley & Sons, Ltd, 2021. doi:https://doi.org/10.1002/9781118846582.ch5.
. “Ecology At Long-Term Research Sites: Integrating Microbes And Ecosystems”. In Third Edition Of The Asm Manual Of Environmental Microbiology, 182-189. Third Edition Of The Asm Manual Of Environmental Microbiology. ASM Press, 2007.
. “Geochemical Influences On Solubility Of Soil Organic Carbon In Arctic Tundra Ecosystems”. Soil Science Society Of America Journal 77, no. 2. Soil Science Society Of America Journal (2013): 473-481. doi:10.2136/sssaj2012.0199.
. “Nitrogen Fixation In Surface Soils And Vegetation In An Arctic Tundra Watershed: A Key Source Of Atmospheric Nitrogen”. Arctic, Antarctic And Alpine Research 38, no. 3. Arctic, Antarctic And Alpine Research (2006): 363-372. doi:10.1657/1523-0430(2006)38%5B363:Nfissa%5D2.0.Co;2.
. “Trajectory Of The Arctic As An Integrated System”. Ecological Applications 23, no. 8. Ecological Applications (2013): 1743-1744. doi:10.1890/11-1498.1.
. “Evidence And Implications Of Recent Climate Change In Northern Alaska And Other Arctic Regions”. Climate Change 72, no. 3. Climate Change (2005): 251-298. doi:10.1007/s10584-005-5352-2.
. “The Effects Of River Fertilization Of Mayfly (Baetis Sp.) Drift Patterns And Population Density In An Arctic River”. Hydrobiologia 240. Hydrobiologia (1992): 247-258. doi:10.1007/BF00013466.
. “The Effects Of River Fertilization On Mayfly Drift Patterns And Population Density In An Arctic Ecosystem”. University of Minnesota, 1990.
. “Blackfly (Diptera:simuliidae) Responses To Phosphorus Enrichment Of An Arctic Tundra Stream”. Hydrobiologia 240. Hydrobiologia (1992): 259-266. doi:10.1007/BF00013467.
. “Response Of Two Black Fly Species (Diptera:simuliidae) To Phosphorum Enrichment Of An Arctic Tundra Stream”. University of Wisconsin-Madison, 1985.
. “Root-Associated Fungi And Acquisitive Root Traits Facilitate Permafrost Nitrogen Uptake From Long-Term Experimentally Warmed Tundra”. New Phytologist n/a. New Phytologist (2024). doi:10.1111/nph.19521.
. “Limited Overall Impacts Of Ectomycorrhizal Inoculation On Recruitment Of Boreal Trees Into Arctic Tundra Following Wildfire Belie Species-Specific Responses”. Plos One 15, no. 7. Plos One (2020): e0235932. doi:10.1371/journal.pone.0235932.
. “Leaf- And Cell-Level Carbon Cycling Responses To A Nitrogen And Phosphorus Gradient In Two Arctic Tundra Species”. American Journal Of Botany 99, no. 10. American Journal Of Botany (2012): 1702-1714. doi:10.3732/ajb.1200251.
. “Environmental Controls Of Foliar Respiration In Arctic Tundra Plants”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2013. doi:10.7916/D8HH6S87.
. “Convergence In The Temperature Response Of Leaf Respiration Across Biomes And Plant Functional Types.”. Proceedings Of The National Academy Of Science 113, no. 14. Proceedings Of The National Academy Of Science (2016): 3832-3837. doi: 10.1073/pnas.1520282113.
. “Thermal Acclimation Of Shoot Respiration In An Arctic Woody Plant Species Subjected To 22 Years Of Warming And Altered Nutrient Supply”. Global Change Biology 20, no. 8. Global Change Biology (2014): 2618-2630. doi:10.1111/gcb.12544.
. “Convergence In The Temperature Response Of Leaf Respiration Across Biomes And Plant Functional Types”. Proceedings Of The National Academy Of Sciences Of The United States Of America 113. Proceedings Of The National Academy Of Sciences Of The United States Of America (2016): 3832–3837. doi:10.1073/pnas.1520282113.
. “Differential Physiological Responses To Environmental Change Promote Woody Shrub Expansion”. Ecology And Evolution 3, no. 5. Ecology And Evolution (2013): 1149-1162. doi:10.1002/ece3.525.
. “Chironomid Community Structure In An Arctic Lake: The Role Of A Predatory Chironomic”. North Carolina State University, 1980.
. “Stable Isotope Signatures Of Benthic Invertebrates In Arctic Lakes Indicate Limited Coupling To Pelagic Production”. Limnology And Oceanography 51, no. 1. Limnology And Oceanography (2006): 177-188. doi:10.4319/lo.2006.51.1.0177.
. “Diet And Digestion Rates Of Slimy Sculpin, Cottus Cognatus, In An Alaskan Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 42, no. 3. Canadian Journal Of Fisheries And Aquatic Sciences (1985): 483-487. doi:10.1139/F85-065.
. “Selective Predation By Procladius In An Arctic Alaskan Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 43, no. 12. Canadian Journal Of Fisheries And Aquatic Sciences (1986): 2523-2528. doi:10.1139/f86-312.
. “The Geomorphic-Trophic Hypothesis For Arctic Lake Food Webs”. International Association Of Theoretical And Applied Limnology, Congress. International Association Of Theoretical And Applied Limnology, Congress. Dublin: [Verh. Int. Ver. Theor. Angew. Limnol./Proc. Int. Assoc. Theor. Appl. Limnol./Trav. Assoc. Int. Limnol. Theor. Appl.], 1998.
.