Bibliography
“Disturbance, Nutrients, And Antecedent Flow Conditions Affect Macroinvertebrate Community Structure And Productivity In An Arctic River”. Limnology And Oceanography 64, no. S1. Limnology And Oceanography (2019): S93-S104. doi:10.1002/lno.10942.
. “Disturbance Legacies And Climate Jointly Drive Tree Growth And Mortality In An Intensively Studied Boreal Forest”. Global Change Biology 20. Global Change Biology (2014): 216-227. doi:10.1111/gcb.12404.
. “Disturbance And Productivity As Codeterminants Of Stream Food Web Complexity In The Arctic”. Limnology And Oceanography 58. Limnology And Oceanography (2013): 2158-2170. doi:10.4319/lo.2013.58.6.2158.
. “Distribution, Production, And Age Structure Of Slimy Sculpin In An Arctic Lake”. Environmental Biology Of Fishes 7, no. 2. Environmental Biology Of Fishes (1982): 171-176. doi:10.1007/BF00001788.
. “A Distributed Analysis Of Lateral Inflows In An Alaskan Arctic Watershed Underlain By Continuous Permafrost”. Hydrological Processes 34. Hydrological Processes (2020): 633–648. doi:10.1002/hyp.13611.
. “Dissolved Organic Matter Chemistry And Transport Along An Arctic Tundra Hillslope”. Global Biogeochemical Cycles 33. Global Biogeochemical Cycles (2019): 47-62. doi:10.1029/2018GB006030.
. “Discharge, Legacy Effects And Nutrient Availability As Determinants Of Temporal Patterns In Biofilm Metabolism And Accrual In An Arctic River”. Freshwater Biology 60, no. 11. Freshwater Biology (2015): 2323 - 2336. doi:10.1111/fwb.12659.
. “Direct And Indirect Effects Of Fish On Pelagic Nitrogen And Phosphorus Availability In Oligotrophic Arctic Alaskan Lakes”. Canadian Journal Of Fisheries And Aquatic Sciences 67, no. 10. Canadian Journal Of Fisheries And Aquatic Sciences (2010): 1635-1648. doi:10.1139/F10-085.
. “Differential Responses Of Ecotypes To Climate In A Ubiquitous Arctic Sedge: Implications For Future Ecosystem C Cycling”. New Phytologist. New Phytologist (2019). doi:10.1111/nph.15790.
. “Differential Physiological Responses To Environmental Change Promote Woody Shrub Expansion”. Ecology And Evolution 3, no. 5. Ecology And Evolution (2013): 1149-1162. doi:10.1002/ece3.525.
. “Differences In Growth And Nutrient Use Among Arctic Plant Growth Forms”. Functional Ecology 3, no. 1. Functional Ecology (1989): 73-80. doi:10.2307/2389677.
. “Differences In Carbon And Nutrient Fractions Among Arctic Growth Forms”. Oecologia 77, no. 4. Oecologia (1988): 506-514. doi:10.1007/BF00377266.
. “Diet Variability In Arctic Grayling In Arctic Lakes”. Vereinigung Verhandlungen International Limnologie 29. Vereinigung Verhandlungen International Limnologie (2005): 685-689. doi:10.1080/03680770.2005.11902766.
. “Diet And Digestion Rates Of Slimy Sculpin, \Textit{Cottus Cognatus , In An Alaskan Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 42. Canadian Journal Of Fisheries And Aquatic Sciences (1985): 483–487. doi:10.1139/f85-065.
. “Diet And Digestion Rates Of Slimy Sculpin, Cottus Cognatus, In An Alaskan Arctic Lake”. Canadian Journal Of Fisheries And Aquatic Sciences 42, no. 3. Canadian Journal Of Fisheries And Aquatic Sciences (1985): 483-487. doi:10.1139/F85-065.
. “Diel Variations In Inorganic Carbon And Nitrogen Uptake By Phytoplankton In An Arctic Lake”. Journal Of Plankton Research 6, no. 4. Journal Of Plankton Research (1984): 571-590. doi:10.1093/plankt/6.4.571.
. “Diel, Seasonal, And Inter-Annual Variation In Carbon Dioxide Effluxes From Lakes And Reservoirs”. Environmental Research Letters 18. Environmental Research Letters (2023): 034046. doi:10.1088/1748-9326/acb834.
. “Diagenetic Trace-Metal Profiles In Arctic Lake Sediments”. Environmental Science & Technology 20. Environmental Science & Technology (1986): 299–302. doi:10.1021/es00145a012.
. “Diagenetic Trace Metal Profiles In Arctic Lake Sediments”. Environmental Science And Technology 20, no. 3. Environmental Science And Technology (1986): 299-302. doi:10.1021/es00145a012.
. “Developmental Plasticity Allows Betula Nana To Dominate Tundra Subjected To An Altered Environment”. Ecology 82, no. 1. Ecology (2001): 18-32. doi:10.1890/0012-9658(2001)082%5B0018:DPABNT%5D2.0.CO;2.
. “The Development And Field Test Of A Tactical Model Of The Planktivorous Feeding Of White Crappie (Pomoxis Annularis)”. Ecological Monographs 54, no. 1. Ecological Monographs (1984): 65-98. doi:10.2307/1942456.
. “The Detritus-Based Microbial-Invertebrate Food Web Contributes Disproportionately To Carbon And Nitrogen Cycling In The Arctic”. Polar Biology. Polar Biology (2017). doi:10.1007/s00300-017-2201-5.
. “The Detritus-Based Microbial-Invertebrate Food Web Contributes Disproportionately To Carbon And Nitrogen Cycling In The Arctic”. Polar Biology 41. Polar Biology (2018): 1531–1545. doi:10.1007/s00300-017-2201-5.
. “Determination Of Leaf Area Index, Total Foliar N, And Normalized Difference Vegetation Index For Arctic Ecosystems Dominated By Cassiope Tetragona”. Arctic, Antarctic And Alpine Research 41, no. 4. Arctic, Antarctic And Alpine Research (2009): 426-433. doi:10.1657/1938-4246-41.4.426.
. “Determinants Of Community Compositional Change Are Equally Affected By Global Change”. Ecology Letters 24. Ecology Letters (2021): 1892–1904. doi:10.1111/ele.13824.
.