Bibliography
“Modeling Carbon–Nutrient Interactions During The Early Recovery Of Tundra After Fire”. Ecological Applications 25, no. 6. Ecological Applications (2015): 1640 - 1652. doi:10.1890/14-1921.1.
. “Ndvi As A Predictor Of Canopy Arthropod Biomass In The Alaskan Arctic Tundra”. Ecological Applications 25, no. 3. Ecological Applications (2015): 779-790. doi:10.1890/14-0632.1.
. “Northward Displacement Of Optimal Climate Conditions For Ecotypes Of Eriophorum Vaginatum L. Across A Latitudinal Gradient In Alaska”. Global Change Biology 21, no. 10. Global Change Biology (2015): 3827–3835. doi:10.1111/gcb.12991.
. “Oxygen Dynamics In Permafrost Thaw Lakes: Anaerobic Bioreactors In The Canadian Subarctic”. Limnology And Oceanography 60, no. 5. Limnology And Oceanography (2015): 1656-1670. doi:10.1002/lno.10126.
. “Patterns And Persistence Of Hydrologic Carbon And Nutrient Export From Collapsing Upland Permafrost”. Biogeosciences 12, no. 12. Biogeosciences (2015): 3725 - 3740. doi:10.5194/bg-12-3725-2015.
. “Photochemical Degradation Of Dissolved Organic Matter In Arctic Surface Waters”. Earth And Environmental Sciences. Earth And Environmental Sciences. University of Michigan, 2015. http://hdl.handle.net/2027.42/113534.
. “Recovery Of Arctic Tundra From Thermal Erosion Disturbance Is Constrained By Nutrient Accumulation: A Modeling Analysis”. Ecological Applications 25, no. 5. Ecological Applications (2015): 1271-1289. doi:10.1890/14-1323.1.
. “Reviews And Syntheses: Effects Of Permafrost Thaw On Arctic Aquatic Ecosystems”. Biogeosciences 12, no. 23. Biogeosciences (2015): 7129 - 7167. doi:10.5194/bg-12-7129-2015.
. “The Role Of Vertebrate Herbivores In Regulating Shrub Expansion In The Arctic: A Synthesis”. Bioscience. Bioscience (2015): biv137. doi:10.1093/biosci/biv137.
. “The Role Of Watershed Characteristics, Permafrost Thaw, And Wildfire On Dissolved Organic Carbon Biodegradability And Water Chemistry In Arctic Headwater Streams”. Biogeosciences Discussions 12, no. 5. Biogeosciences Discussions (2015): 4021 - 4056. doi:10.5194/bg-12-4221-2015.
. “Seasonal Changes In Quantity And Composition Of Suspended Particulate Organic Matter In Lagoons Of The Alaskan Beaufort Sea”. Marine Ecology Progress Series 527. Marine Ecology Progress Series (2015). doi:10.3354/meps11207.
. “Space Use And Habitat Affinities Of The Singing Vole On The Northern Foothills Of The Brooks Range, Alaska.”. Department Of Natural Resources. Department Of Natural Resources. University of New Hampshire, 2015. https://scholars.unh.edu/thesis/1065/.
. “Spatial Habitat Use Post-Breeding: A Radio-Telemetry Study In Gambel’s White-Crowned Sparrows”. Society For Integrative And Comparative Biology, Annual Meeting. Society For Integrative And Comparative Biology, Annual Meeting. Sacramento, CA, January 2015, 2015.
. “Spatiotemporal Patterns Of Tundra Fires: Late-Quaternary Charcoal Records From Alaska”. Biogeosciences 12. Biogeosciences (2015): 3177-3209. doi:10.5194/bgd-12-3177-2015.
. “Spectral Indices For Remote Sensing Of Phytomass, Deciduous Shrubs, And Productivity In Alaskan Arctic Tundra”. International Journal Of Remote Sensing 36, no. 17. International Journal Of Remote Sensing (2015): 4344 - 4362. doi:10.1080/01431161.2015.1080878.
. .
“Thermokarst And Wildfire: Effects Of Disturbances Related To Climate Change On The E Cological Characteristics And Functions Of Arctic Headwater Streams”. Natural Resources. Natural Resources. The University of Vermont, 2015. https://scholarworks.uvm.edu/graddis/520.
. “Tiller Population Dynamics Of Reciprocally Transplanted Eriophorum Vaginatum L. Ecotypes In A Changing Climate”. Population Ecology 57, no. 1. Population Ecology (2015): 117-126. doi:10.1007/s10144-014-0459-9.
. .
“Will Warming Surge As Arctic Microbes Feast On Defrosting Carbon?”. Live Science. Live Science. Purch.com, 2015. http://www.livescience.com/49431-impact-from-arctic-microbes-feasting-on-thawing-tundra.html.
. “Biomass Offsets Little Or None Of Permafrost Carbon Release From Soils, Streams, And Wildfire: An Expert Assessment”. Environmental Research Letters 11. Environmental Research Letters (2016): 034014. doi:10.1088/1748-9326/11/3/034014.
. “Breeding On The Leading Edge Of A Northward Expansion: Differences In Morphology And The Stress Response Of The Arctic Gambel's White-Crowned Sparrow”. Oecologia 180, no. 1. Oecologia (2016): 33-44. doi:10.1007/s00442-015-3447-7.
. “Climate-Induced Habitat Fragmentation Affects Metapopulation Structure Of Arctic Grayling In Tundra Streams”. Ecology And Evolutionary Biology. Ecology And Evolutionary Biology. University of Connecticut, 2016. https://opencommons.uconn.edu/dissertations/1259.
. “Conducting Research At The Arctic Lter: Bridging Community And Ecosystem Ecology Via Collaborations”. In Long Term Ecological Research: Changing The Nature Of Scientists, 83-90. Long Term Ecological Research: Changing The Nature Of Scientists. New York, NY: Oxford University Press, 2016.
. “Convergence In The Temperature Response Of Leaf Respiration Across Biomes And Plant Functional Types.”. Proceedings Of The National Academy Of Science 113, no. 14. Proceedings Of The National Academy Of Science (2016): 3832-3837. doi: 10.1073/pnas.1520282113.
.