Bibliography
“Arctic Physiological Ecology In An Ecosystems Context”. In Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective, 3-10. Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective. New York: Academic Press, 1992.
. “Arctic Lakes And Streams As Gas Conduits To The Atmosphere: Implications For Tundra Carbon Budgets”. Science 251, no. 4991. Science (1991): 298-301. doi:10.1126/science.251.4991.298.
. “Arctic Investigations Of Some Factors That Control The Vertical Distributions And Swimming Activities Of Zooplankton”. University of New Hampshire, 1978.
. “Arctic Hydroclimatology”. Columbia University, 2006.
. “Is Arctic Greening Consistent With The Ecology Of Tundra? Lessons From An Ecologically Informed Mass Balance Model”. Environmental Research Letters 13, no. 12. Environmental Research Letters (2018): 125007. doi:10.1088/1748-9326/aaeb50.
. “The Arctic Freshwater System: Changes And Impacts”. Journal Of Geophysical Research: Biogeosciences 112, no. G4. Journal Of Geophysical Research: Biogeosciences (2007): G04S54. doi:10.1029/2006JG000353.
. Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective. New York: Academic Press, 1992.
. “Arctic Ecosystem Response To Change”. In Arctic Research Of The United States, 7:2-9. Arctic Research Of The United States, 1993.
. “Arctic Concentration–Discharge Relationships For Dissolved Organic Carbon And Nitrate Vary With Landscape And Season”. Limnology And Oceanography 66. Limnology And Oceanography (2021). doi:10.1002/lno.11682.
. “Arctic Concentration–Discharge Relationships For Dissolved Organic Carbon And Nitrate Vary With Landscape And Season”. Limnology And Oceanography. Limnology And Oceanography (2020). doi:10.1002/lno.11682.
. “Arctic Climate: Potential For Change Under Global Warming”. In Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective, 11-34. Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective. San Diego, CA: Academic Press, 1991.
. “Arctic Canopy Photosynthetic Efficiency Enhanced Under Diffuse Light, Linked To A Reduction In The Fraction Of The Canopy In Deep Shade”. New Phytologist 202, no. 4. New Phytologist (2014): 1267-1276. doi:10.1111/nph.12750.
. “Arctic Bosmina Morphology And Copepod Predation”. Limnology And Oceanography 24. Limnology And Oceanography (1979): 564-568. doi:10.4319/lo.1979.24.3.0564.
. “Arctic Arthropod Communities In Habitats Of Differing Shrub Abundance”. Department Of Biology. Department Of Biology. University of Texas at Arlington, 2012. http://hdl.handle.net/10106/11138.
. “Arctic Arthropod Assemblages In Habitats Of Differing Shrub Dominance”. Ecography 36, no. 9. Ecography (2013): 994-1003. doi:10.1111/j.1600-0587.2012.00078.x.
. “Arctic And Boreal Ecosystems Of Western North America As Components Of The Climate System”. Global Change Biology 6. Global Change Biology (2000): 211-223. doi:10.1046/j.1365-2486.2000.06022.x.
. “Arctic Amplification Of Global Warming Strengthened By Sunlight Oxidation Of Permafrost Carbon To Co 2”. Geophysical Research Letters 47, no. 12. Geophysical Research Letters (2020). doi:10.1029/2020GL087085.
. “Arctic Alaska And Seward Peninsula”. In The Circumpolar Active Layer Monitoring (Calm) Program: Research Designs And Initial Results, 24(2):165-258. The Circumpolar Active Layer Monitoring (Calm) Program: Research Designs And Initial Results. Polar Geography, 2002.
. “Arctic”. In Physiological Ecology Of North American Plant Communities, 16-40. Physiological Ecology Of North American Plant Communities. New York, NY: Chapman and Hail, 1985. doi:10.1007/978-94-009-4830-3_2.
. “An Approach To Using Snow Areal Depletion Curves Inferred From Modis And Its Application For Land Surface Modelling In Alaska”. Hydrological Processes 19, no. 14. Hydrological Processes (2005): 1755-2774. doi:10.1002/hyp.5784.
. “An Approach To Understanding Hydrologic Connectivity On The Hillslope And The Implications For Nutrient Transport”. Global Biogeochemical Cycles 17, no. 4. Global Biogeochemical Cycles (2003): 1105. doi:10.1029/2003GB002041.
. “An Approach To Modeling Resource Optimization For Substitutable And Interdependent Resources”. Ecological Modelling 425. Ecological Modelling (2020): 109033. doi:10.1016/j.ecolmodel.2020.109033.
. “Application Of Molecular Knowledge Of Microbes To Studies Of Ecological Processes: Why The Integration Is So Challenging”. In Bulletin Of The Ecological Society Of America, 91:68-79. Bulletin Of The Ecological Society Of America, 2010. http://dx.doi.org/10.1890/0012-9623-91.1.68.
. “Analyzing Spectral Signatures As Rapid Indicators Of Leaf Biochemistry In Plants Of The Arctic Tundra”. Department Of Ecology, Evolution And Environmental Biology. Department Of Ecology, Evolution And Environmental Biology. Columbia University, 2015.
. “Analysis Of Co2, Temperature, And Moisture Effects On Carbon Storage In Alaskan Arctic Tundra Using A General Ecosystem Model”. In Global Change And Arctic Terrestrial Ecosystems, 349-364. Global Change And Arctic Terrestrial Ecosystems. NY: Springer-Verlag, 1997.
.