Bibliography
“Rainfall Alters Permafrost Soil Redox Conditions, But Meta-Omics Show Divergent Microbial Community Responses By Tundra Type In The Arctic”. Soil Systems 5. Soil Systems (2021): 17. doi:10.3390/soilsystems5010017.
. “Shallow Soils Are Warmer Under Trees And Tall Shrubs Across Arctic And Boreal Ecosystems”. Environmental Research Letters 16. Environmental Research Letters (2021): 015001. doi:10.1088/1748-9326/abc994.
. “Shrub Expansion In The Arctic May Induce Large‐Scale Carbon Losses Due To Changes In Plant‐Soil Interactions”. Plant And Soil 463. Plant And Soil (2021): 643–651. doi:10.1007/s11104-021-04919-8.
. “Solar Position Confounds The Relationship Between Ecosystem Function And Vegetation Indices Derived From Solar And Photosynthetically Active Radiation Fluxes”. Agricultural And Forest Meteorology 298-299. Agricultural And Forest Meteorology (2021): 108291. doi:10.1016/j.agrformet.2020.108291.
. “Stream Dissolved Organic Matter In Permafrost Regions Shows Surprising Compositional Similarities But Negative Priming And Nutrient Effects”. Global Biogeochemical Cycles 35. Global Biogeochemical Cycles (2021). doi:10.1029/2020gb006719.
. “Time Lags: Insights From The U.s. Long Term Ecological Research Network”. Ecosphere 12. Ecosphere (2021). doi:10.1002/ecs2.3431.
. “Tundra Wildfire Triggers Sustained Lateral Nutrient Loss In Alaskan Arctic”. Global Change Biology. Global Change Biology (2021). doi:https://doi.org/10.1111/gcb.15507.
. “Understanding The Effects Of Climate Change Via Disturbance On Pristine Arctic Lakes—Multitrophic Level Response And Recovery To A 12‐Yr, Low‐Level Fertilization Experiment”. Limnology And Oceanography. Limnology And Oceanography (2021): lno.11893. doi:10.1002/lno.11893.
. “Bacterioplankton Dispersal And Biogeochemical Function Across Alaskan Arctic Catchments”. Environmental Microbiology 24, no. 12. Environmental Microbiology (2022): 5690 - 5706. doi:10.1111/1462-2920.16259.
. “Circum‐Arctic Distribution Of Chemical Anti‐Herbivore Compounds Suggests Biome‐Wide Trade‐Off In Defence Strategies In Arctic Shrubs”. Ecography 2022, no. 11. Ecography (2022). doi:10.1111/ecog.06166.
. .
.
“Cross-Biome Synthesis Of Source Versus Sink Limits To Tree Growthuncoupled Carbon Uptake And Storage”. Science 376, no. 6594. Science (2022): 758 - 761. doi:10.1126/science.abm4875.
. “Effects Of Long-Term Climate Trends On The Methane And Co2 Exchange Processes Of Toolik Lake, Alaska”. Frontiers In Environmental Science 10. Frontiers In Environmental Science (2022). doi:10.3389/fenvs.2022.948529.
. “Essential Oil Content Of Rhododendron Tomentosum Responds Strongly To Manipulation Of Ecosystem Resources In Arctic Alaska”. Arctic Science. Arctic Science (2022): 1 - 19. doi:10.1139/as-2020-0055.
. “Evaluating Photosynthetic Activity Across Arctic-Boreal Land Cover Types Using Solar-Induced Fluorescenceabstract”. Environmental Research Letters 17, no. 11. Environmental Research Letters (2022): 115009. doi:10.1088/1748-9326/ac9dae.
. “Growth Rings Show Limited Evidence For Ungulates’ Potential To Suppress Shrubs Across The Arcticabstract”. Environmental Research Letters. Environmental Research Letters (2022). doi:10.1088/1748-9326/ac5207.
. “Herbivores In Arctic Ecosystems: Effects Of Climate Change And Implications For Carbon And Nutrient Cycling”. Annals Of The New York Academy Of Sciences 1516, no. 1. Annals Of The New York Academy Of Sciences (2022): 28 - 47. doi:10.1111/nyas.14863.
. “Landscape Genomics Provides Evidence Of Ecotypic Adaptation And A Barrier To Gene Flow At Treeline For The Arctic Foundation Species Eriophorum Vaginatum”. Frontiers In Plant Science 13. Frontiers In Plant Science (2022). doi:10.3389/fpls.2022.860439.
. “Leaf And Root Phenology And Biomass Of Eriophorum Vaginatum In Response To Warming In The Arcticabstract”. Journal Of Plant Ecology 15, no. 5. Journal Of Plant Ecology (2022): 1091 - 1105. doi:10.1093/jpe/rtac010.
. “Maximum Summer Temperatures Predict The Temperature Adaptation Of Arctic Soil Bacterial Communities”. Biogeosciences Discussions. Biogeosciences Discussions (2022): 1–26. doi:10.5194/bg-2022-184.
. “Mismatch Of N Release From The Permafrost And Vegetative Uptake Opens Pathways Of Increasing Nitrous Oxide Emissions In The High Arctic”. Global Change Biology 28, no. 20. Global Change Biology (2022): 5973 - 5990. doi:10.1111/gcb.v28.20.
. “Model Responses To Co 2 And Warming Are Underestimated Without Explicit Representation Of Arctic Small‐Mammal Grazing”. Ecological Applications 32, no. 1. Ecological Applications (2022). doi:10.1002/eap.v32.110.1002/eap.2478.
. “Multi-Year, Spatially Extensive, Watershed-Scale Synoptic Stream Chemistry And Water Quality Conditions For Six Permafrost-Underlain Arctic Watersheds”. Earth System Science Data 14, no. 1. Earth System Science Data (2022): 95 - 116. doi:10.5194/essd-14-95-2022.
. “N And P Constrain C In Ecosystems Under Climate Change: Role Of Nutrient Redistribution, Accumulation, And Stoichiometry”. Ecological Applications 32, no. 8. Ecological Applications (2022). doi:10.1002/eap.2684.
.