Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Long-Term Warming Restructures Arctic Tundra Without Changing Net Soil Carbon Storage”. Nature 497. Nature (2013): 615-618. doi:10.1038/nature12129.
. “Responses Of A Tundra System To Warming Using Scamps: A Stoichiometrically Coupled, Acclimating Microbe–Plant–Soil Model”. Ecological Monographs 84. Ecological Monographs (2014): 151–170. doi:10.1890/12-2119.1.
. “Seasonal Patterns Of Microbial Extracellular Enzyme Activities In An Arctic Tundra Soil: Identifying Direct And Indirect Effects Of Long-Term Summer Warming”. Soil Biology And Biochemistry 66. Soil Biology And Biochemistry (2013): 119–129. doi:10.1016/j.soilbio.2013.07.003.
. “Responses Of A Tundra System To Warming Using Scamps: A Stoichiometrically Coupled, Acclimating Microbe-Plant-Soil Model”. Ecological Monographs 84. Ecological Monographs (2014): 151-170. doi:10.1890/12-2119.1.
. “Mycorrhizal Networks: Mechanisms, Ecology And Modelling”. Fungal Biology Reviews 26, no. 1. Fungal Biology Reviews (2012): 39-60. doi:10.1016/j.fbr.2012.01.001.
. “Unexpectedly High Among-Habitat Spider (Araneae) Faunal Diversity From The Arctic Long-Term Experimental Research (Lter) Field Station At Toolik Lake, Alaska, United States Of America”. The Canadian Entomologist 145, no. Special Issue 02. The Canadian Entomologist (2013): 219-226. doi:10.4039/tce.2013.5.
. “Benthos As The Basis For Arctic Lake Food Webs”. Aquatic Ecology 37, no. 4. Aquatic Ecology (2003): 437-445. doi:10.1023/B:AECO.0000007042.09767.dd.
. “Reimagine Fire Science For The Anthropoceneabstract”. Pnas Nexus 1, no. 3. Pnas Nexus (2022). doi:10.1093/pnasnexus/pgac115.
. “Reimagine Fire Science For The Anthropocene”. Pnas Nexus 1. Pnas Nexus (2022): pgac115. doi:10.1093/pnasnexus/pgac115.
. “Revealing Biogeochemical Signatures Of Arctic Landscapes With River Chemistry”. Scientific Reports 9, no. 1. Scientific Reports (2019). doi:10.1038/s41598-019-49296-6.
. “Multi-Year, Spatially Extensive, Watershed-Scale Synoptic Stream Chemistry And Water Quality Conditions For Six Permafrost-Underlain Arctic Watersheds”. Earth System Science Data 14, no. 1. Earth System Science Data (2022): 95 - 116. doi:10.5194/essd-14-95-2022.
. “We Cannot Shrug Off The Shoulder Seasons: Addressing Knowledge And Data Gaps In An Arctic Headwater”. Environmental Research Letters 15. Environmental Research Letters (2020): 104027. doi:10.1088/1748-9326/ab9d3c.
. “Arctic Concentration–Discharge Relationships For Dissolved Organic Carbon And Nitrate Vary With Landscape And Season”. Limnology And Oceanography. Limnology And Oceanography (2020). doi:10.1002/lno.11682.
. “Arctic Concentration–Discharge Relationships For Dissolved Organic Carbon And Nitrate Vary With Landscape And Season”. Limnology And Oceanography 66. Limnology And Oceanography (2021). doi:10.1002/lno.11682.
. “Factors Limiting Seasonal Growth And Peak Biomass Accumulation In Eriophorum Vaginatum In Alaskan Tussock Tundra”. Journal Of Ecology 74, no. 1. Journal Of Ecology (1986): 257-278. doi:10.2307/2260362.
. “Pan-Arctic Modelling Of Net Ecosystem Exchange Of Co $_\Textrm2$”. Philosophical Transactions Of The Royal Society B: Biological Sciences 368. Philosophical Transactions Of The Royal Society B: Biological Sciences (2013): 20120485. doi:10.1098/rstb.2012.0485.
. “Functional Convergence In Regulation Of Net Co2 Flux In Heterogeneous Tundra Landscapes In Alaska And Sweden”. Journal Of Ecology 95, no. 4. Journal Of Ecology (2007): 802-817. doi:10.1111/j.1365-2745.2007.01259.x.
. “Global Warming And Terrestrial Ecosystems: A Conceptual Framework For Analysis”. Bioscience 50, no. 10. Bioscience (2000): 871-882. doi:10.1641/0006-3568(2000)050%5B0871:GWATEA%5D2.0.CO;2.
. “Response Of Arctic Ecosystems To Climate Change: Results Of Long-Term Field Experiments In Sweden And Alaska”. Polar Research 18, no. 2. Polar Research (1999): 245-252. doi:10.1111/j.1751-8369.1999.tb00300.x.
. “Effect Of Fertilizer On Production And Biomass Of Tussock Tundra, Alaska, U.s.a.”. Arctic And Alpine Research 18. Arctic And Alpine Research (1986): 261. doi:10.2307/1550883.
. “Mineral Nutrition And Leaf Longevity In Ledum Palustre : The Role Of Individual Nutrients And The Timing Of Leaf Mortality”. Oecologia 56, no. 2-3. Oecologia (1983): 160-165. doi:10.1007/BF00379686.
. “Long-Term Responses To Factorial, Npk Fertilizer Treatment By Alaskan Wet And Moist Tundra Sedge Species”. Ecography 18, no. 3. Ecography (1995): 259-275. doi:10.1111/j.1600-0587.1995.tb00129.x.
. “Panarctic Modeling Of Net Ecosystem Exchange Of Co2”. Philosophical Transactions Of Royal Society: Biology 368, no. 1624. Philosophical Transactions Of Royal Society: Biology (2013): 20120485. doi:10.1098/rstb.2012.0485.
. “Species Composition Interacts With Fertilizer To Control Long-Term Change In Tundra Productivity”. Ecology 82, no. 11. Ecology (2001): 3163-3181. doi:10.1890/0012-9658%282001%29082%5B3163%3ASCIWFT%5D2.0.CO%3B2.
. “Biomass And Co2 Flux In Wet Sedge Tundras: Responses To Nutrients, Temperature, And Light”. Ecological Monographs 68, no. 1. Ecological Monographs (1998): 75-97. doi:10.1890/0012-9615(1998)068%5B0075:BACFIW%5D2.0.CO;2.
.