Bibliography
“Comparison Of Epilithic Algal And Bryophyte Metabolism In An Arctic Tundra Stream, Alaska”. Journal Of The North American Benthological Society 17, no. 2. Journal Of The North American Benthological Society (1998): 210-227. doi:10.2307/1467963.
. “Comparison Of In-Channel Mobile-Immobile Zone Exchange During Instantaneous And Constant-Rate Stream Tracer Additions: Implications For Design And Interpretation Of Non-Conservative Tracer Experiments”. Journal Of Hydrology 357, no. 1-2. Journal Of Hydrology (2008): 112-1124. doi:10.1016/j.jhydrol.2008.05.006.
. “Comparison Of Instantaneous And Constant-Rate Stream Tracer Experiments Through Non-Parametric Analysis Of Residence Time Distributions”. Water Resources Research 44, no. 6. Water Resources Research (2008): W06404. doi:10.1029/2007WR006274.
. “A Comparison Of Slimy Sculpin (Cottus Cognatus) Populations In Arctic Lakes With And Without Piscivorous Predators”. Hydrobiologia 240. Hydrobiologia (1992): 189-202. doi:10.1007/BF00013460.
. “A Comparison Of Whole And Thin-Sectioned Otolith Aging Techniques And Validation Of Annuli For Arctic Grayling”. Northwest Science 71, no. 3. Northwest Science (1997): 224-232. http://hdl.handle.net/2376/1243.
. “Competition And Coexistence Among The Grazing Snail Lymnaea, Chironomidae, And Microcrustacea In An Arctic Epilithic Lacustrine Community”. Ecology 64. Ecology (1983): 10-15. doi:10.2307/1937323.
. “Competition And Coexistence Among The Grazing Snail Lymnaea, Chironomidae, And Mircrocrustacea In An Arctic Epilithic Lacustrine Community”. Ecology 64. Ecology (1983): 10–15. doi:10.2307/1937323.
. “Competition Causes Regular Spacing Of Alder In Alaskan Shrub Tundra”. Oecologia 79, no. 3. Oecologia (1989): 412-416. doi:10.1007/BF00384322.
. “Is Competition Important To Arctic Zooplankton Community Structure?”. Freshwater Biology 49, no. 9. Freshwater Biology (2004): 1103-1111. doi:10.1111/j.1365-2427.2004.01250.x.
. “Consistent Effects Of Nitrogen Amendments On Soil Microbial Communities And Processes Across Biomes”. Global Change Biology 18, no. 6. Global Change Biology (2012): 1918-1927. doi:10.1111/j.1365-2486.2012.02639.x.
. “Continuous Estimates Of Co $_\Textrm2$ Efflux From Arctic And Boreal Soils During The Snow-Covered Season In Alaska: Arctic And Boreal Winter C Cycles”. Journal Of Geophysical Research: Biogeosciences 113. Journal Of Geophysical Research: Biogeosciences (2008). doi:10.1029/2008jg000715.
. “A Continuous-Flow Periphyton Bioassay: Tests Of Nutrient Limitation In A Tundra Stream”. Limnology And Oceanography 28. Limnology And Oceanography (1983): 583-591. doi:10.4319/lo.1983.28.3.0583.
. “Contrasting Effects Of Long Term Versus Short-Term Nitrogen Addition On Photosynthesis And Respiration In The Arctic”. Plant Ecology 214. Plant Ecology (2013): 1273–1286. doi:10.1007/s11258-013-0250-6.
. “Contrasting Responses Of Nitrogen-Fixation In Arctic Lichens To Experimental And Ambient Nitrogen And Phosphorus Availability”. Arctic, Antarctic And Alpine Research 37, no. 3. Arctic, Antarctic And Alpine Research (2005): 396-401. doi:10.1657/1523-0430%282005%29037%5B0396%3ACRONIA%5D2.0.CO%3B2.
. “Contrasting Soil Thermal Responses To Fire In Alaskan Tundra And Boreal Forest”. Journal Of Geophysical Research: Earth Surface 120, no. 2. Journal Of Geophysical Research: Earth Surface (2015): 363-378. doi:10.1002/2014jf003180.
. “The Contribution Of Mosses To The Carbon And Water Exchange Of Arctic Ecosystems: Quantification And Relationship With System Properties”. Plant, Cell And Environment 30. Plant, Cell And Environment (2007): 1205-1215. doi:10.1111/j.1365-3040.2007.01697.x.
. “Control Mechanisms Of Arctic Lake Ecosystems: A Limnocorral Experiment”. Hydrobiologia 240. Hydrobiologia (1992): 143-188. doi:10.1007/BF00013459.
. “Control Of Nitrogen Export From Watersheds By Headwater Streams”. Science 292, no. 5514. Science (2001): 86-90. doi:10.1126/science.1056874.
. “Controls Of Benthic Nitrogen Fixation And Primary Production From Nutrient Enrichment Of Oligotrophic, Arctic Lakes”. Ecosystems 16. Ecosystems (2013): 1550–1564. doi:10.1007/s10021-013-9701-0.
. “Controls Of Benthic Nitrogen Fixation And Primary Production From Nutrient Enrichment Of Oligotrophic Arctic Lakes”. Ecosystems 16. Ecosystems (2013): 1150-1564. doi:10.1007/s10021-013-9701-0.
. “The Controls Of Iron And Oxygen On Hydroxyl Radical (•Oh) Production In Soils”. Soil Systems 3, no. 1. Soil Systems (2019): 1. doi:10.3390/soilsystems3010001.
. “The Controls Of Iron And Oxygen On Hydroxyl Radical (•Oh) Production In Soils”. Soil Systems 3. Soil Systems (2018): 1. doi:10.3390/soilsystems3010001.
. “Controls On Dissolved Organic Matter (Dom) Degradation In A Headwater Stream: The Influence Of Photochemical And Hydrological Conditions In Determining Light-Limitation Or Substrate-Limitation Of Photo-Degradation”. Biogeosciences 12, no. 22. Biogeosciences (2015): 6669 - 6685. doi:10.5194/bg-12-6669-2015.
. “Controls On Microbial Food Webs In Oligotrophic Arctic Lakes”. Arch. Hydrobiol. Spec. Issues Advanc. Limnol 54. Arch. Hydrobiol. Spec. Issues Advanc. Limnol (1999): 61-76. http://www.schweizerbart.de//publications/detail/isbn/9783510470563/Archiv\_Advances\_in\_Limnology\_54\_Fest.
. “The Controls On Net Ecosystem Productivity Along An Arctic Transect: A Model Comparison With Flux Measurements”. Global Change Biology 6, no. S1. Global Change Biology (2000): 116-126. doi:10.1046/j.1365-2486.2000.06016.x.
.