Bibliography
Export 887 results:
Filters: Type is Journal Article [Clear All Filters]
“Summer Population Fluctuations, Feeding, And Growth Of \Textit{Hydra In An Arctic Lake1: Hydra In An Arctic Lake”. Limnology And Oceanography 26. Limnology And Oceanography (1981): 697–708. doi:10.4319/lo.1981.26.4.0697.
. “Competition And Coexistence Among The Grazing Snail Lymnaea, Chironomidae, And Microcrustacea In An Arctic Epilithic Lacustrine Community”. Ecology 64. Ecology (1983): 10-15. doi:10.2307/1937323.
. “Competition And Coexistence Among The Grazing Snail Lymnaea, Chironomidae, And Mircrocrustacea In An Arctic Epilithic Lacustrine Community”. Ecology 64. Ecology (1983): 10–15. doi:10.2307/1937323.
. “Insights Into The Tussock Growth Form With Model–Data Fusion”. New Phytologist. New Phytologist (2023). doi:10.1111/nph.18751.
. “Insights Into The Tussock Growth Form With Model Data Fusion”. New Phytologist n/a. New Phytologist (2023). doi:10.1111/nph.18751.
. “An Open-Source, Durable, And Low-Cost Alternative To Commercially Available Soil Temperature Data Loggers”. Sensors 22. Sensors (2021): 148. doi:10.3390/s22010148.
. “Range Shifts In A Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses And Gains”. Environmental Research Letters 17. Environmental Research Letters (2022): 045024. doi:10.1088/1748-9326/ac6005.
. “Differential Responses Of Ecotypes To Climate In A Ubiquitous Arctic Sedge: Implications For Future Ecosystem C Cycling”. New Phytologist. New Phytologist (2019). doi:10.1111/nph.15790.
. “Range Shifts In A Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses And Gainsabstract”. Environmental Research Letters 17, no. 4. Environmental Research Letters (2022): 045024. doi:10.1088/1748-9326/ac6005.
. “How Long Do Population Level Field Experiments Need To Be? Utilising Data From The 40‐Year‐Old Lter Network”. Ecology Letters 24. Ecology Letters (2021): 1103–1111. doi:10.1111/ele.13710.
. “Benthic Community Metabolism In Deep And Shallow Arctic Lakes During 13 Years Of Whole-Lake Fertilization”. Limnology And Oceanography 60, no. 5. Limnology And Oceanography (2015). doi:10.1002/lno.10120.
. “Hydrogen Isotope Fractionation In Leaf Waxes In The Alaskan Arctic Tundra”. Geochimica Et Cosmochimica Acta 213. Geochimica Et Cosmochimica Acta (2017): 216 - 236. doi:10.1016/j.gca.2017.06.028.
. “Benthic Community Metabolism In Deep And Shallow Arctic Lakes During 13 Years Of Whole-Lake Fertilization: Nutrient Effects On Arctic Lake Benthos”. Limnology And Oceanography 60. Limnology And Oceanography (2015): 1604–1618. doi:10.1002/lno.10120.
. “Effect Of Continuous Light On Leaf Wax Isotope Ratios In Betula Nana And Eriophorum Vaginatum: Implications For Arctic Paleoclimate Reconstructions”. Organic Geochemistry 125. Organic Geochemistry (2018): 70 - 81. doi:10.1016/j.orggeochem.2018.08.008.
. “Lacustrine Leaf Wax Hydrogen Isotopes Indicate Strong Regional Climate Feedbacks In Beringia Since The Last Ice Age”. Quaternary Science Reviews 269. Quaternary Science Reviews (2021): 107130. doi:10.1016/j.quascirev.2021.107130.
. “Investigating The Controls On Soil Organic Matter Decomposition In Tussock Tundra Soil And Permafrost After Fire”. Soil Biology And Biochemistry 99. Soil Biology And Biochemistry (2016): 108 - 116. doi:10.1016/j.soilbio.2016.04.020.
. “Food Web Ecology: Playing Jenga And Beyond”. Science 309, no. 5731. Science (2005): 68-71. doi:10.1126/science.1096112.
. “Cumulative Nitrogen Input Drives Species Loss In Terrestrial Ecosystems”. Global Ecology And Biogeography 20, no. 6. Global Ecology And Biogeography (2011): 803-816. doi:10.1111/j.1466-8238.2011.00652.x.
. “Whole River Fertilization Stimulates Fish Production In An Arctic Tundra River”. Canadian Journal Of Fisheries And Aquatic Sciences 49, no. 9. Canadian Journal Of Fisheries And Aquatic Sciences (1992): 1890-1901. doi:10.1139/F92-209.
. “Swimming Performance And Metabolism Of 0+ Year Thymallus Arcticus”. Journal Of Fish Biology 67. Journal Of Fish Biology (2005): 910–918. doi:10.1111/j.0022-1112.2005.00784.x.
. “Influence Of Environmental Variability On The Growth Of Age-0 And Adult Arctic Grayling”. Transactions Of The American Fisheries Society 128, no. 6. Transactions Of The American Fisheries Society (1999): 1163-1175. doi:10.1577/1548-8659(1999)128<1163:IOEVOT>2.0.CO;2.
. “Swimming Ability And Metabolism Of 0+ Arctic Grayling Thymallus Arcticus”. Journal Of Fish Biology 67, no. 4. Journal Of Fish Biology (2005): 910-918. doi:10.1111/j.0022-1112.2005.00784.x.
. “Effects Of Fish Density And River Fertilization On Algal Standing Stocks, Invertebrate Communities, And Fish Production In An Arctic River”. Canadian Journal Of Fisheries And Aquatic Sciences 54, no. 2. Canadian Journal Of Fisheries And Aquatic Sciences (1997): 269-283. doi:10.1139/f96-268.
. “Long-Term Experimental Warming And Nutrient Additions Increase Productivity In Tall Deciduous Shrub Tundra”. Ecosphere 6, no. 5. Ecosphere (2014): Article 72. doi:10.1890/es13-00281.1.
. “Effects Of Arctic Shrub Expansion On Biophysical Vs. Biogeochemical Drivers Of Litter Decomposition”. Ecology 95, no. 7. Ecology (2014): 1861-1875. doi:10.1890/13-2221.1.
.